Skip to main content
Log in

Fluid Kinetic Energy Asymptotic Expansion for Two Variable Radii Moving Spherical Bubbles at Small Separation Distance

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Two spherical bubbles with changing radii are considered to be moving in ideal fluid along their center-line. The exact expression for the fluid kinetic energy is obtained. The Stokes stream function is expanded in Gegenbauer polynomials in bispherical coordinates. This expansion is used to obtain the exact series for the fluid kinetic energy quadratic form coefficients. The new series are confirmed to be correct by comparison with the known ones. The main advantage of the new kinetic energy form is the possibility to obtain asymptotic expansions at small separation distance between the bubbles. These expansions are obtained and their convergence is analyzed. The results of this work can be used to describe the bubbles approach before the contact and their coalescence in acoustic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bjerknes, V.F.K., Field of Force, New York: Columbia Univ. Press, 1906.

    MATH  Google Scholar 

  2. Zilonova, E., Solovchuk, M., and Sheu, T.W.H., Dynamics of bubble-bubble interactions experiencing viscoelastic drag, Phys. Rev. E, 2019, vol. 99, no. 2, p. 023109.

    Article  ADS  Google Scholar 

  3. Doinikov, A.A. and Bouakaz, A., Theoretical model for coupled radial and translational motion of two bubbles at arbitrary separation distances, Phys. Rev. E, 2015, vol. 92, no. 4, p. 043001.

    Article  ADS  Google Scholar 

  4. Jiao, J., He, Y., Kentish, S.E., Ashokkumar, M., Manasseh, R., and Lee, J., Experimental and theoretical analysis of secondary Bjerknes forces between two bubbles in a standing wave, Ultrasonics, 2015, vol. 58, pp. 35–42.

    Article  Google Scholar 

  5. Cleve, S., Guédra, M., Inserra, C., et al., Surface modes with controlled axisymmetry triggered by bubble coalescence in a high-amplitude acoustic field, Phys. Rev. E, 2018, vol. 98, no. 3, p. 033115.

    Article  ADS  Google Scholar 

  6. Kazantsev, V.F., The motion of gaseous bubbles in a liquid under the influence of Bjerknes forces arising in an acoustic field, Sov. Phys.-Dokl., 1960, vol. 4, no. 1, p. 1250.

    ADS  Google Scholar 

  7. Crum L.A., Bjerknes forces on bubbles in a stationary sound field, J. Acoust. Soc. Am., 1975, vol. 57, no. 6, pp. 1363–1370.

    Article  ADS  Google Scholar 

  8. Porfiryev, N.P., Interaction forces between two spheres oscillating in an ideal fluid, in Dinamika sploshnoi sredy s nestatsionarnymi granitsami (Dynamics of a Continuous Medium with Non-Stationary Boundaries), Cheboksary: Chuvash State Univ. Named after I.N. Ulyanov, 1984, pp. 95–103.

  9. Voinov, O.V. and Petrov, A.G., Motion of a variable-volume sphere in an ideal fluid near a plane surface, Fluid Dyn., 1971, vol. 6, no. 5, pp. 808–817.

    Article  ADS  Google Scholar 

  10. Burov, A.V., Motion of two pulsating spheres in an ideal incompressible fluid, Fluid Dyn., 1983, vol. 18, no. 3, pp. 472–475.

    Article  ADS  Google Scholar 

  11. Kuznetsov, G.N. and Shchekin, I.E., Interaction of pulsating bubbles in a viscous fluid, Akust. Zh., 1972, vol. 18, pp. 565–570.

    Google Scholar 

  12. Doinikov, A.A., Translational motion of two interacting bubbles in a strong acoustic field, Phys. Rev. E, 2001, vol. 64, no. 2, p. 026301.

    Article  ADS  Google Scholar 

  13. Harkin, A., Kaper, T.J., and Nadim, A.L.I., Coupled pulsation and translation of two gas bubbles in a liquid, J. Fluid Mech., 2001, vol. 445, pp. 377–411.

    Article  ADS  MathSciNet  Google Scholar 

  14. Aganin, A.A. and Davletshin, A.I., Simulation of interaction of gas bubbles in a liquid with allowing for their small asphericity, Mat. Model., 2009, vol. 21, no. 6, pp. 89–102.

    MATH  Google Scholar 

  15. Petrov, A.G., Forced oscillations of two gas bubbles in a fluid in the vicinity of bubble contact, Fluid Dyn., 2011, vol. 46, no. 4, pp. 579–595.

    Article  ADS  MathSciNet  Google Scholar 

  16. Jiao, J., He, Y., Leong, T., Kentish, S.E., et al., Experimental and theoretical studies on the movements of two bubbles in an acoustic standing wave field, J. Phys. Chem. B, 2013, vol. 117, no. 41, pp. 12549–12555.

    Article  Google Scholar 

  17. Jiao, J., He Y., Yasui, K., Kentish, S.E., et al., Influence of acoustic pressure and bubble sizes on the coalescence of two contacting bubbles in an acoustic field, Ultrason. Sonochem., 2015, vol. 22, pp. 70–77.

    Article  Google Scholar 

  18. Garbin, V., Cojoc, D., Ferrari, E., et al., Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging, Appl. Phys. Lett., 2007, vol. 90, p. 114103.

    Article  ADS  Google Scholar 

  19. Kobelev, Y.A., Ostrovskii, L.A., and Sutin, A.M., Self-illumination effect for acoustic waves in a liquid with gas bubbles, JETP Lett., 1979, vol. 30, no. 7, pp. 395–398.

    ADS  Google Scholar 

  20. Hicks, W.M., On the motion of two spheres in a fluid, Philos. Trans. R. Soc. London, 1880, no. 171, pp. 455–492.

  21. Voinov, O.V., Movement of two spheres of variable radii in an ideal fluid, Tezisy dokladov nauchoi konferentsii. Institut mekhaniki. MGU (Proc. Scientific Conference. Institute of Mechanics, Moscow State University), Moscow: Moscow State Univ., 1970, pp. 10–12.

  22. Voinov, O.V., Motion of inviscid fluid near two spheres with radial velocities on the surface, Vestn. Mosk. Univ., Ser. 1: Mat.,Mech., 1969, vol. 5, pp. 83–88.

    Google Scholar 

  23. Voinov, O.V. and Petrov, A.G., The motion of bubbles in a liquid, Itogi Nauki Tekh.,Ser.: Mekh. Zhidk. Gaza, 1976, vol. 10, pp. 86–147.

    Google Scholar 

  24. Hicks, W.M., On the problem of two pulsating spheres in a fluid, Proc. Cambridge Philos. Soc., 1879, vol. 3, pp. 276–285.

    Google Scholar 

  25. Hicks, W.M., On the problem of two pulsating spheres in a fluid (part II), Proc. Cambridge Philos. Soc., 1879, vol. 4.

  26. Selby, A.L., On two pulsating spheres in a liquid, London, Edinburgh, Dublin Philos. Mag. J. Sci., 1890, vol. 29, no. 176, pp. 113–123.

    Article  Google Scholar 

  27. Jeffery, G.B., On a form of the solution of Laplace’s equation suitable for problems relating to two spheres, Proc. R. Soc. London, Ser. A, 1912, vol. 87, no. 593, pp. 109–120.

    Article  ADS  Google Scholar 

  28. Neumann, C., Hydrodynamische untersuchungen: nebst einem Anhange über die Probleme der Elektrostatik und der magnetischen Induction, Leipzig: Druck und Verlag von B.G. Teubner, 1883.

    MATH  Google Scholar 

  29. Bentwich, M. and Miloh, T., On the exact solution for the two-sphere problem in axisymmetrical potential flow, J. Appl. Mech., 1978, vol. 45, no. 3, pp. 463–468.

    Article  ADS  Google Scholar 

  30. Porfiryev, N.P., The motion of a sphere in a liquid perpendicular to the solid wall and to the unperturbed level of the free surface, in Dinamika sploshnoi sredy s nestatsionarnymi granitsami (Dynamics of a Continuous Medium with Non-Stationary Boundaries), Cheboksary: Chuvash State Univ. Named after I.N. Ulyanov, 1979, pp. 80–100.

  31. Porfiryev, N.P., Interaction of spheres pulsating in an ideal fluid with a solid wall, in Problemy gidrodinamiki bol’shikh skorostei (Problems of High-Speed Hydrodynamics), Cheboksary: Chuvash State Univ. Named after I.N. Ulyanov, 1993, pp. 201–214.

  32. Voinov, O.V., On the motion of two spheres in a perfect fluid, J. Appl. Math. Mech. (Engl. Transl.), 1969, vol. 33, no. 4, pp. 638–646.

  33. Sanduleanu, S.V. and Petrov, A.G., Trinomial expansion of kinetic-energy coefficients for ideal fluid at motion of two spheres near their contact, Dokl. Phys., 2018, vol. 63, no. 12, pp. 517–520.

    Article  ADS  Google Scholar 

  34. Raszillier, H., Guiasu, I., and Durst, F., Optimal approximation of the added mass matrix of two spheres of unequal radii by an asymptotic short distance expansion, Z. Angew. Math. Mech., 1990, vol. 70, no. 2, pp. 83–90.

    Article  MathSciNet  Google Scholar 

  35. Lamb, H., Hydrodynamics, Cambridge: Cambridge Univ. Press, 1975.

    MATH  Google Scholar 

  36. Whittaker, E.T. and Watson, G.N., A Course of Modern Analysis, Cambridge: Cambridge Univ. Press, 1996.

    Book  Google Scholar 

  37. Maksimov, A.O. and Yusupov, V.I., Coupled oscillations of a pair of closely spaced bubbles, Eur. J. Mech.-B/Fluids, 2016, vol. 60, pp. 164–174.

    Article  ADS  MathSciNet  Google Scholar 

  38. Maksimov, A.O. and Polovinka, Y.A., Scattering from a pair of closely spaced bubbles, J. Acoust. Soc. Am., 2018, vol. 144, no. 1, pp. 104–114.

    Article  ADS  Google Scholar 

  39. Dingle, R.B., Asymptotic Expansions: Their Derivation and Interpretation, London: Academic Press, 1973.

    MATH  Google Scholar 

  40. Petrov, A.G. and Kharlamov, A.A., Three-dimensional problems of the hydrodynamic interaction between bodies in a viscous fluid in the vicinity of their contact, Fluid Dyn., 2013, vol. 48, no. 5, pp. 577–587.

    Article  MathSciNet  Google Scholar 

  41. Witze, C.P., Schrock, V.E., and Chambre, P.L., Flow about a growing sphere in contact with a plane surface, Int. J. Heat Mass Transfer, 1968, vol. 11, no. 11, pp. 1637–1652.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks A.G. Petrov for his helpful comments and discussion of the paper.

Funding

The present work was supported by the Ministry of Science and Higher Education within the framework of the Russian State Assignment under contract no. AAAA-A20-120011690138-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sanduleanu.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanduleanu, S.V. Fluid Kinetic Energy Asymptotic Expansion for Two Variable Radii Moving Spherical Bubbles at Small Separation Distance. Fluid Dyn 55, 877–889 (2020). https://doi.org/10.1134/S0015462820070083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462820070083

Keywords:

Navigation