Skip to main content
Log in

Refined Model of Dynamics of Weakly Non-Spherical Bubbles with the Centers in a Straight Line

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

A mathematical model of interaction of weakly non-spherical gas bubbles in a liquid with the centers in a straight line is developed. This model is a system of ordinary differential equations of the second order in the radii of the bubbles, the spatial coordinates of their centers, and the amplitudes of their deviations from the spherical ones. It is of the sixth order of accuracy in terms of the ratio of the characteristic radius of the bubbles to the characteristic distance between them, which exceeds the accuracy of currently existing analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. V. F. K. Bjerknes, Field of Force (Columbia Univ. Press, New York, 1906).

    MATH  Google Scholar 

  2. R. Mettin, I. Akhatov, U. Parlitz, C. D. Ohl, and W. Lauterborn, ‘‘Bjerknes force between small cavitation bubbles in a strong acoustic field,’’ Phys. Rev. E 56, 2924–2931 (1997).

    Article  Google Scholar 

  3. B. Kieser, R. Phillion, S. Smith, and T. McCartney ‘‘The application of industrial scale ultrasonic cleaning to heat exchangers,’’ in Proceedings of International Conference on Heat Exchanger Fouling and Cleaning (2011), pp. 336–366.

  4. K. S. Suslick, ‘‘Sonochemistry,’’ Science (Washington, DC, U. S.) 247 (4949), 1439–1445 (1990).

    Article  Google Scholar 

  5. D. L. Miller and J. Quddus, ‘‘Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice,’’ Proc. Natl. Acad. Sci. U. S. A. 97, 10179–10184 (2000).

    Article  Google Scholar 

  6. G. N. Kuznetsov and I. E. Shchekin, ‘‘Interaction of pulsating bubbles in a viscous liquid,’’ Ultrasonics 18, 466тAY469 (1973).

  7. A. A. Doinikov, ‘‘Translational motion of two interacting bubbles in a strong acoustic field,’’ Phys. Rev. E 64, 026301 (2001).

    Article  Google Scholar 

  8. S. Konovalova and I. Akhatov, ‘‘Structure formation in acoustic cavitation,’’ Multiphase Sci. Technol. 17, 343–371 (2005).

    Article  Google Scholar 

  9. J. F. Liang, W. Z. Chen, W. H. Shao, and S. B. Qi, ‘‘Aspherical oscillation of two interacting bubbles in an ultrasound field,’’ Chin. Phys. Lett. 29, 074701 (2012).

    Article  Google Scholar 

  10. A. Harkin, T. J. Kaper, and A. Nadim, ‘‘Coupled pulsation and translation of two gas bubbles in a liquid,’’ J. Fluid Mech. 445, 377–411 (2001).

    Article  MathSciNet  Google Scholar 

  11. A. A. Aganin and A. I. Davletshin, ‘‘Simulation of interaction of gas bubbles in a liquid with allowing for their small asphericity,’’ Mat. Model. 21 (6), 89–102 (2009).

    MATH  Google Scholar 

  12. A. A. Aganin, A. I. Davletshin, and T. F. Khalitova ‘‘Expansion and collapse of bubbles in the central region of a streamer,’’ Lobachevskii J. Math. 42, 15–23 (2021).

    Article  MathSciNet  Google Scholar 

  13. S. Fujikawa and H. Takahira, ‘‘Dynamics of two nonspherical cavitation bubbles in liquids,’’ Fluid Dyn. Res. 4, 179–194 (1988).

    Article  Google Scholar 

  14. A. A. Aganin and A. I. Davletshin, ‘‘A refined model of interaction of spherical gas bubbles in a liquid,’’ Mat. Model. 21 (9), 89–98 (2009).

    MATH  Google Scholar 

  15. J. R. Blake, G. S. Keen, R. P. Tong, and M. Wilson, ‘‘Acoustic cavitation: The fluid dynamics of nonтAYspherical bubbles,’’ Philos. Trans. R. Soc. A 357 (1751), 251–267 (1999).

  16. A. A. Aganin, L. A. Kosolapova, and V. G. Malakhov ‘‘Numerical simulation of the evolution of a gas bubble in a liquid near a wall,’’ Math. Models Comput. Simul. 10, 89–98 (2018).

    Article  MathSciNet  Google Scholar 

  17. E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics (Cambridge Univ. Press, Cambridge, 2012).

    MATH  Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation no. 21-11-00100, https://rscf.ru/en/project/21-11-00100/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Davletshin.

Additional information

(Submitted by D. A. Gubaidullin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davletshin, A.I. Refined Model of Dynamics of Weakly Non-Spherical Bubbles with the Centers in a Straight Line. Lobachevskii J Math 43, 1082–1087 (2022). https://doi.org/10.1134/S1995080222080054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222080054

Keywords:

Navigation