Skip to main content
Log in

Modified Version of the Averaged Navier—Stokes Equations

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

—A new explicit form of the Navier—Stokes equations is obtained by means of the Reynoldsaveraging of these equations within the framework of the generally accepted model of spectrum-averaged fluctuations. The equations thus obtained contain some new terms caused by density fluctuations, while certain their terms included earlier on the intuitive level are now physically validated. The equations of the k—ω model are derived using the method of moments. A new equation for the vortex fluctuations, written earlier on the intuitive and analogue level, is obtained from the general momentum equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Reynolds, “An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels,” Trans. Roy. Phil. Soc. 174, 935 (1883).

    Article  ADS  MATH  Google Scholar 

  2. O. Reynolds, “On the dynamical theory of incompressible viscous fluids and the determination of the criterion,” Trans. Roy. Phil. Soc. 186, 123 (1895).

    Article  ADS  MATH  Google Scholar 

  3. Problems of Turbulence (ONTI, Moscow, 1936) [in Russian].

  4. N. E. Kochin, I. A. Kibel’, and N. V. Roze, Theoretical Hydromechanics (Wiley Interscience, 1964).

    MATH  Google Scholar 

  5. H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1968).

    MATH  Google Scholar 

  6. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Pergamon, Oxford, 1966).

    MATH  Google Scholar 

  7. V. V. Lunev, Real Gas Flows with High Velocities (CRC, Boca Raton, 2009).

    Book  Google Scholar 

  8. G. G. Stokes, “On the theories of the internal friction of fluids in motion,” Trans. Cambridge Phil. Soc. (1845).

    Google Scholar 

  9. J. V. Boussinesq, Théorie de l’écoulement tourbillonnant (Gauthier-Villais, Paris, 1897).

    MATH  Google Scholar 

  10. L. Prandtl, “Untersuchungen zur ausgebildete turbulenz,” Z. Angew. Math. Mech., No. 5 (1925).

    Google Scholar 

  11. H. Oertel Jr. (ed.), Prandtl - Fuhrer durch Stromungslehre (Teubner, 1931, 2008).

    Google Scholar 

  12. A. N. Kolmogorov, “Equations of the turbulent motion of an incompressible fluid,” Dokl. Akad. Nauk SSSR. Ser. Fizika 6(12), 56–58 (1942).

    Google Scholar 

  13. S. G. Kovasznay, “The Turbulent boundary layer,” Annu. Rev. Fluid. Mech. 2, 95–112 (1970).

    Article  ADS  Google Scholar 

  14. P. G. Saffman, “A model for inhomogeneous turbulent flow,” Proc. Roy. Soc. London. A 317, 417–433 (1970).

    Article  ADS  MATH  Google Scholar 

  15. D. C. Wilcox, Turbulence Modeling for CFD (DCW Industries Inc. 1998).

    Google Scholar 

  16. F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering application,” AIAA J. 32(8), 1598–1605 (1994).

    Article  ADS  Google Scholar 

  17. A. N. Secundov, V. Kh. Strelets, and A. K. Travin. “Two-equation vt-L turbulence model. Account for elliptic mechanism of turbulent transport,” ASME J. Fluid Engineering. 123, 11–15 (2000).

    Article  Google Scholar 

  18. G. S. Glushko, “Turbulent boundary layer on a flat plate in an incompressible fluid,” Izv. Akad. Nauk SSSR, Mekhanika, No. 4, 13–23 (1965).

    Google Scholar 

  19. A. N. Gulyaev, V. E. Kozlov, and A. N. Sekundov, “A universal one-equation model for turbulent viscosity,” Fluid Dynamics 28 (4), 485–494 (1993).

    Article  ADS  MATH  Google Scholar 

  20. P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” AIAA Paper No. 0439 (1992).

    Google Scholar 

  21. A. V. Garbaruk, M. Kh. Strelets, and M. L. Shur, Modeling of Turbulence in the Calculations of Complicated Flows (St. Petersburg, 2012) [in Russian].

    Google Scholar 

  22. O. I. Khintse, Turbulence, Its Mechanism and Theory (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  23. Yu. V. Lapin, Turbulent Boundary Layer in Supersonic Gas Flows (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  24. A. Favre, “Equations des gaz turbulents compressibles,” J. Mecanique No. 3, 361–390 (1965).

    Google Scholar 

  25. D. C. Wilcox, “Formulation of the k-turbulence model revisited,” AIAA J. 46(11), 2823–2838 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lunev.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya RAN. Mekhanika Zhidkosti i Gaza, 2019, No. 2, pp. 134–144.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunev, V.V. Modified Version of the Averaged Navier—Stokes Equations. Fluid Dyn 54, 279–289 (2019). https://doi.org/10.1134/S0015462819020083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462819020083

Keywords

Navigation