Skip to main content
Log in

Problems of Evaporative Convection (Review)

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The theoretical foundations for mathematical modeling of the convective flows with evaporation are presented, and the topical research areas are given. The special attention is payed to models constructed within continuum mechanics, to comparison of the different formulations of corresponding problems including formulations of boundary conditions at the interfaces. Alternative analytical approaches and experimental studies are briefly discussed in the context of thermal convection accompanied by evaporation (or condensation) in the systems with thin liquid layers which are mostly sensitive to the phenomena of interphase exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Lame, G. and Clapeyron, B.P., Memoire sur la solidification par refroidissement d’un globe liquide, Ann. Chem. Phys., 1831, vol. 47, pp. 250–256.

    Google Scholar 

  2. Clapeyron, B.P.E., Mémoire sur la puissance motrice de la chaleur, J. Ec. Polytech. (Paris), 1834, vol. 14, pp. 153–190.

    Google Scholar 

  3. Boltzmann, L., Lectures on Gas Theory, Berkeley, CA: Univ. California Press, 1964.

    Google Scholar 

  4. Knudsen, M., Die maximale Verdampfungsgeschwindigkeit des Quecksilbers, Ann. Phys. Chem., 1915, vol. 47, pp. 697–708.

    ADS  Google Scholar 

  5. Maxwell, J.C., Collected Scientific Papers, Cambridge: Cambridge Univ. Press, 1890, vol. 2.

  6. Stefan, J., Uber das Gleichgewicht und die Bewegung, insbesondere die Diffusion von Lzas gemengen, Wien: Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, 1871, pp. 63–124.

    Google Scholar 

  7. Gibbs, J.W., On the equilibrium of heterogeneous substances, Trans. Conn. Acad. Arts Sci., 1875, vol. 3, pp. 108–248.

    Google Scholar 

  8. Gibbs, J.W., On the equilibrium of heterogeneous substances, Trans. Conn. Acad. Arts Sci., 1878, vol. 3, pp. 343–524.

    MATH  Google Scholar 

  9. Langmuir, I., The evaporation, condensation and reflection of molecules and the mechanism of adsorption, Phys. Rev., 1916, vol. 8, no. 2, pp. 149–176.

    ADS  Google Scholar 

  10. Yan, W.M., Lin, T.F., and Tsay, Y.L., Evaporative cooling of liquid film through interfacial heat and mass transfer in a vertical channel–I. Experimental study, Int. J. Heat Mass Transfer, 1991, vol. 34, nos. 4–5, pp. 1105–1111.

    Google Scholar 

  11. Ben Jabrallah, S., Cherif, A.S., Dhifaoui, B., et al., Experimental study of the evaporation of a falling film in a closed cavity, Desalination, 2005, vol. 180, pp. 197–206.

    Google Scholar 

  12. Ben Jabrallah, S., Belgith, A., and Corriou, J.P., Convective heat and mass transfer with evaporation of a falling film in a cavity, Int. J. Therm. Sci., 2006, vol. 45, pp. 16–28.

    Google Scholar 

  13. Cherif, A.S., Kassim, M.A., Benhamou, B., et al., Experimental and numerical study of mixed convection heat and mass transfer in a vertical channel with film evaporation, Int. J. Therm. Sci., 2011, vol. 50, no. 6, pp. 942–953.

    Google Scholar 

  14. Hoke, B.C. and Chen, J.C., Mass transfer in evaporating falling liquid film mixtures, AIChE J., 1992, vol. 38, no. 5, pp. 781–787.

    Google Scholar 

  15. Palen, J.W., Wang, Q., and Chen, J.C., Falling film evaporation of binary mixtures, AIChE J., 1994, vol. 40, no. 2, pp. 207–214.

    Google Scholar 

  16. Kabov, O.A., Zaitsev, D.V., Cheverda, V.V., et al., Evaporation and flow dynamics of thin, shear-driven liquid films, Exp. Therm. Fluid Sci., 2011, vol. 35, no. 5, pp. 825–831.

    Google Scholar 

  17. Kabov, O.A., Zaitsev, D.V., Kabova, Yu.O., et al., Evaporation, dynamics and crisis phenomena in thin liquid films sheared by gas in a narrow channel, Proc. 15th Int. Heat Transfer Conference IHTC-14, Kyoto, August 10–15, 2014, IHTC14–9537.

    Google Scholar 

  18. Kabov, O.A., Kuznetsov, V.V., and Kabova, Yu.O., in Encyclopedia of Two-Phase Heat Transfer and Flow II: Special Topics and Applications, vol. 1: Special Topics in Boiling in Microchannels, Micro-Evaporator Cooling Systems, chap. 2: Evaporation, Dynamics and Interface Deformations in Thin Liquid Films Sheared by Gas in a Microchannel, Thome, J.R. and Kim, J., Eds., Singapore: World Scientific, 2015, pp. 57–108.

  19. Reutov, V.P., Ezersky, A.B., Rybushkina, G.V., et al., Convective structures in a thin layer of an evaporating liquid under an airflow, J. Appl. Mech. Tech. Phys., 2007, vol. 48, no. 4, pp. 469–478.

    ADS  MATH  Google Scholar 

  20. Reutov, V.P., Chernov, V.V., Ezersky, A.B., et al., Observations of convective cell-to-roll transition in evaporating liquid blown off by airflow, Izv., Atmos. Ocean. Phys., 2012, vol. 48, no. 2, pp. 185–192.

    Google Scholar 

  21. Ajaev, V.S. and Kabov, O.A., Heat and mass transfer near contact lines on heated surfaces (review), Int. J. Heat Mass Transfer, 2017, vol. 108, part A, pp. 918–932.

    Google Scholar 

  22. Raghupathi, P.A. and Kandlikar, S.G., Contact line region heat transfer mechanisms for an evaporating interface, Int. J. Heat Mass Transfer, 2016, vol. 95, pp. 296–306.

    Google Scholar 

  23. Colinet, P., Joannes, L., Queeckers, P., et al., ITEL: a sounding rocket experiment dedicated to the study of the evaporation process, Proc. 15th ESA Symposium on European Rocket and Balloon Programmes and Related Research, Biarritz, May 28–31, 2001, pp. 423–427.

    Google Scholar 

  24. Iorio, C.S., Kabov, O.A., and Legros, J.-C., Thermal patterns in evaporating liquid, Microgravity Sci. Technol., 2007, vol. 19, nos. 3–4, pp. 27–29.

    ADS  Google Scholar 

  25. Iorio, C.S., Goncharova, O.N., and Kabov, O.A., Study of evaporative convection in an open cavity under shear stress flow, Microgravity Sci. Technol., 2009, vol. 21, no. 1, Suppl., pp. S313–S319.

    ADS  Google Scholar 

  26. Scheid B., Margerit, J., Iorio, C.S., et al., Onset of thermal ripples at the interface of an evaporating liquid under a flow of inert gas, Exp. Fluids, 2012, vol. 52, pp. 1107–1119.

    Google Scholar 

  27. Toth, B., Future experiments to measure liquid-gas phase change and heat transfer phenomena on the international space station, Microgravity Sci. Technol., 2012, vol. 24, no. 3, pp. 189–194.

    ADS  Google Scholar 

  28. Lyulin, Y.V. and Kabov, O.A., Evaporative convection in a horizontal liquid layer under shear-stress gas flow, Int. J. Heat Mass Transfer, 2014, vol. 70, pp. 599–609.

    Google Scholar 

  29. Lyulin, Yu.V., Feoktistov, D.V., Afanas’ev, I.A., et al., Measuring the rate of local evaporation from the liquid surface under the action of gas flow, Tech. Phys. Lett., 2015, vol. 41, no. 7, pp. 665–667.

    ADS  Google Scholar 

  30. Kreta, A., Lyulin, Y., and Kabov, O., Effect of temperature on the convection flow within the liquid evaporation into the gas flow, J. Phys.: Conf. Ser., 2016, vol. 754, p. 032011.

    Google Scholar 

  31. Lyulin, Yu.V. and Kabov, O.A., Measurement of the evaporation mass flow rate in a horizontal liquid layer partly opened into flowing gas, Tech. Phys. Lett., 2013, vol. 39, no. 9, pp. 795–797.

    ADS  Google Scholar 

  32. Napolitano, L.G., Thermodynamics and dynamics of surface phases, Acta Astron., 1979, vol. 6, no. 9, pp. 1093–1012.

    MATH  Google Scholar 

  33. Pukhnachev, V.V., Dvizhenie vyazkoi zhidkosti so svobodnymi granitsami (Motion of Viscous Liquid with Free Borders), Novosibirsk: Novosibirsk State Univ., 1989.

    MATH  Google Scholar 

  34. Katkov, V.L., Precise solutions of some convection problems, Prikl. Mat. Mekh., 1968, vol. 32, no. 3, pp. 482–487.

    MATH  Google Scholar 

  35. Goncharova, O.N., Group classification for equations of gravitational convection, in Dinamika sploshnoi sredy. Sbornik nauchnykh trudov (Dynamics of Continuous Medium. Collection of Scientific Works), Novosibirsk: Lavrentyev Institute of Hydrodynamics Siberian Branch USSR Acad. Sci., 1987, issue 79, pp. 22–35.

    MATH  Google Scholar 

  36. Pukhnachev, V.V., Model hierarchy for convection theory, Zap. Nauchn. Semin. POMI, 2002, no. 288, pp. 152–177.

    Google Scholar 

  37. Goncharova, O.N., Unique solvability of a two-dimensional nonstationary problem for the convection equations with temperature-dependent viscosity, Differ. Equations, 2002, vol. 38, no. 2, pp. 249–258.

    MathSciNet  MATH  Google Scholar 

  38. Andreev, V.K., Bublik, V.V., and Bytev, V.O., Simmetrii neklassicheskikh modelei gidrodinamiki (Symmetries of Non-Classical Models for Hydrodynamics), Novosibirsk: Nauka, 2003.

    Google Scholar 

  39. Andreev, V.K., Bekezhanova, V.V., Efimova, M.V., et al., Non-classical models for convection: accurate solutions and their stability, Vychisl. Tekhnol., 2009, vol. 14, no. 6, pp. 5–18.

    Google Scholar 

  40. Ryzhkov, I.I., Termodiffuziya v smesyakh: uravneniya, simmetrii, resheniya i ikh ustoichivost' (Thermo-Diffusion in Mixtures: Equations, Symmetries, Solutions, and their Stability), Novosibirsk: Siberian Branch Russ. Acad. Sci., 2013.

    Google Scholar 

  41. Ovsyannikov, L.V., Vvedenie v mekhaniku sploshnykh sred (Introduction into Mechanics of Continuous Media), Novosibirsk: Novosibirsk State Univ., 1976, part 1.

  42. Ovsyannikov, L.V., Vvedenie v mekhaniku sploshnykh sred (Introduction into Mechanics of Continuous Media), Novosibirsk: Novosibirsk State Univ., 1977, part 2.

  43. Serrin, J., Mathematical Principles of Classical Fluid Mechanics, Berlin, Göttingen, Heidelberg: Springer, 1959.

    Google Scholar 

  44. Sedov, L.I., Vvedenie v mekhaniku sploshnoi sredy (Introduction into Mechanics of Continuous Medium), Moscow: Izd. Fiziko-Matematicheskoi Literatury, 1962.

    Google Scholar 

  45. Belova, I.V., Numerical Researches of Stresses in Solid Phase During Crystallization, Cand. Sci. (Phys.-Math.) Dissertation, Novosibirsk, 1990.

    Google Scholar 

  46. Goncharova, O.N., Mathematical model for forming spherical shells under the conditions of short-term zerogravity, in Dinamika sploshnoi sredy. Sbornik nauchnykh trudov (Dynamics of Continuous Medium. Collection of Scientific Works), Novosibirsk: Lavrentyev Institute of Hydrodynamics Siberian Branch USSR Acad. Sci., 1987, issue 82, pp. 65–79.

    Google Scholar 

  47. Goncharova, O.N., Global solvability for the problem on formation of spherical micro-balloons, in Dinamika sploshnoi sredy. Sbornik nauchnykh trudov (Dynamics of Continuous Medium. Collection of Scientific Works), Novosibirsk: Lavrentyev Institute of Hydrodynamics Siberian Branch Russ. Acad. Sci., 1993, issue 106, pp. 36–48.

    MathSciNet  Google Scholar 

  48. Rezanova, E.V., Numerical research for dynamics of spherical gas-containing shell, Izv. Altai. Gos. Univ., 2013, no. 77 (1–2), pp. 42–47.

    Google Scholar 

  49. Zakurdaeva, A.V. and Rezanova, E.V., Ambient pressure effect onto dynamics of liquid spherical shell: numerical research, Omsk. Nauchn. Vestn., 2015, no. 3 (143), pp. 312–315.

    Google Scholar 

  50. Zakurdaeva, A.V. and Rezanova, E.V., Stage heating effect onto formation process of spherical gas-containing shell, Prikl. Mat. Fundam. Inf., 2016, no. 3, pp. 16–20.

    Google Scholar 

  51. Goncharova, O.N. and Pukhnachev, V.V., Diffusional approximation in the problem on spherical micro-balloons formation under the conditions of short-term zero-gravity, in Modelirovanie v mekhanike (Simulation for Mechanics), Novosibirsk: Computing Centre, Khristianovich Institute of Theoretical and Applied Mechanics Siberian Branch USSR Acad. Sci., 1990, issue 4 (21), pp. 3–95.

    Google Scholar 

  52. De Groot, S.R. and Mazur, P., Non-Equilibrium Thermodynamics, Amsterdam: North Holland, 1962.

    MATH  Google Scholar 

  53. Prigogine, I. and Dufay, R., Chemical Thermodynamics, London, New York: Longmans, Green, 1954.

    Google Scholar 

  54. Isachenko, M.R., Teploobmen pri kondensatsii (Heat Transfer under Condensation), Moscow: Energiya, 1977.

    Google Scholar 

  55. Knake, O. and Stranskii, I.N., Mechanism of evaporation, Usp. Fiz. Nauk, 1959, vol. 68, no. 2, pp. 261–305.

    Google Scholar 

  56. Hertz, H., Uber die Verdimstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume, Ann. Phys. Chem., 1882, vol. 253, pp. 177–200.

    Google Scholar 

  57. Rahimi, P. and Ward, C.A., Kinetics of evaporation: statistical rate theory approach, Int. J. Thermodyn., 2005, vol. 8, no. 1, pp. 1–14.

    Google Scholar 

  58. Margerit, J., Colinet, P., Lebon, C., Iorio, C.S., and Legros, J.C., Interfacial nonequilibrium and Benard- Marangoni instability of a liquid-vapor system, Phys. Rev. E, 2003, vol. 68, p. 041601.

    ADS  Google Scholar 

  59. Haase, R., Thermodynamics of Irreversible Processes, Mineola, NY: Dover Publ., 1990.

    Google Scholar 

  60. Bedeaux, D., Non-equilibrium thermodynamics of surfaces, Adv. Thermodyn., 1992, vol. 6, pp. 430–459.

    Google Scholar 

  61. Bedeaux, D., Hermans, L.J.F., and Ytrehus, T., Slow evaporation and condensation, Phys. A (Amsterdam, Neth.), 1990, vol. 169, pp. 263–280.

    ADS  Google Scholar 

  62. Bedeaux, D. and Kjelstrup, S., Irreversible thermodynamics–a tool to describe phase transition far from global equilibrium, Chem. Eng. Sci., 2004, vol. 59, pp. 109–118.

    Google Scholar 

  63. Kovac, J., Non-equilibrium thermodynamics of interfacial systems, Phys. A (Amsterdam, Neth.), 1981, vol. 107, pp. 280–298.

    ADS  Google Scholar 

  64. Waldmann, L., Non-equilibrium thermodynamics of boundary conditions, Z. Naturforsch., A: Phys. Sci., 1967, vol. 22, pp. 1269–1280.

    ADS  Google Scholar 

  65. Margerit, J., Dondlingcr, M., and Dauby, P.C., Improved 1.5-sided model for the weakly nonlinear study of Benard-Marangoni instabilities in an evaporating liquid layer, J. Colloid Interface Sci., 2005, vol. 290, pp. 220–230.

    ADS  Google Scholar 

  66. Haut, B. and Colinet, P., Surface-tension-driven instability of a liquid layer evaporating into an inert gas, J. Colloid Interface Sci., 2005, vol. 285, pp. 296–305.

    ADS  Google Scholar 

  67. Burelbach, J.P., Bankoff, S.G., and Davis, S.H., Nonlinear stability of evaporating/condensing liquid films, J. Fluid Mech., 1988, vol. 195, pp. 463–494.

    ADS  MATH  Google Scholar 

  68. Miladinova, S. and Lebon, G., Effects of nonuniform heating and thermocapillarity in evaporating films falling down an inclined plate, Acta Mech., 2005, vol. 174, no. 1, pp. 33–49.

    MATH  Google Scholar 

  69. Mirzade, F.Kh., Wave instability of a molten metal layer formed by intense laser irradiation, Tech. Phys., 2005, vol. 50, no. 8, pp. 993–998.

    Google Scholar 

  70. Oron, A., Davis, S.H., and Bankoff, S.G., Long-scale evolution of thin liquid films, Rev. Mod. Phys., 1997, vol. 69, no. 3, pp. 931–980.

    ADS  Google Scholar 

  71. Shklyaev, O.E. and Fried, E., Stability of an evaporating thin liquid film, J. Fluid Mech., 2007, vol. 584, pp. 157–183.

    ADS  MathSciNet  MATH  Google Scholar 

  72. Gatapova, E.Ya. and Kabov, O.A., Shear-driven flows of locally heated liquid films, Int. J. Heat Mass Transfer, 2008, vol. 51, nos. 19–20, pp. 4797–4810.

    MATH  Google Scholar 

  73. Klentzman, J. and Ajaev, V.S., The effects of evaporation on fingering instabilities, Phys. Fluids, 2009, vol. 21, p. 122101.

    ADS  MATH  Google Scholar 

  74. Kabov, O.A., Kabova, Yu.O., and Kuznetsov, V.V., Evaporation of a nonisothermal liquid film in a microchannel with co-current gas flow, Dokl. Phys., 2012, vol. 57, no. 10, pp. 405–410.

    ADS  Google Scholar 

  75. Kabova, Yu., Kuznetsov, V.V., Kabov, O., et al., Evaporation of a thin viscous liquid film sheared by gas in a microchannel, Int. J. Heat Mass Transfer, 2014, vol. 68, pp. 527–541.

    Google Scholar 

  76. Goncharova, O.N., Rezanova, E.V., and Tarasov, Ya.A., Mathematical simulation of thermocapillary flows in thin liquid layer by considering evaporation, Izv. Altai. Gos. Univ., 2014, no. 81 (1/1), pp. 47–52.

    Google Scholar 

  77. Goncharova, O.N. and Rezanova, E.V., Mathematical model for liquid thin layer flows by considering evaporation at thermocapillary interface, Izv. Altai. Gos. Univ., 2014, no. 81 (1/2), pp. 21–25.

    Google Scholar 

  78. Ajaev, V.S., Brutin, D., and Tadrist, L., Evaporation of ultra-thin liquid films into air, Microgravity Sci. Technol., 2010, vol. 22, no. 3, pp. 441–446.

    ADS  Google Scholar 

  79. Kopbosynov, B.K. and Pukhnachev, V.V., Thermocapillary motion in thin liquid layer, in Gidromekhanika i protsessy perenosa v nevesomosti. Sbornik nauchnykh trudov (Hydromechanics and Transfer Processes under Zero- Gravity. Collection of Scientific Works), Sverdlovsk: Ural Scientific Center USSR Acad. Sci., 1983, pp. 116–125.

    Google Scholar 

  80. Kabova, Yu.O. and Kuznetsov, V.V., Flowing down of non-isothermal thin liquid layer with not constant viscosity, Prikl. Mekh. Tekh. Fiz., 2002, vol. 43, no. 6, pp. 134–141.

    MATH  Google Scholar 

  81. Delhaye, J.M., Jump conditions and entropy sources in two-phase systems. Local instant formulation, Int. J. Multiphase Flow, 1974, vol. 1, pp. 395–409.

    MATH  Google Scholar 

  82. Rose, J.W., Accurate of approximate equations for intensive sub-sonic evaporation, Int. J. Heat Mass Transfer, 2000, vol. 43, no. 20, pp. 3869–3875.

    MATH  Google Scholar 

  83. Miladinova, S., Lebon, C., Slavtchev, S., et al., The effect of non-uniform heating on long-wave instabilities of evaporating falling films, Proc. 6th Workshop on Transport Phenomena in Two-Phase Flow, Bourgas-2001, Boyadjiev, Ch. and Hristov, J., Eds., Bourgas, September 11–16, 2001, pp. 121–128.

    Google Scholar 

  84. Bankoff, S.G., Taylor instability of an evaporating plane interface, AIChE J., 1961, vol. 7, pp. 485–487.

    Google Scholar 

  85. Gatapova, E.Ya., Kabov, O.A., Kuznetsov, V.V., et al., Evaporating shear-driven liquid film flow in minichannel with local heat source, J. Eng. Thermophys., 2005, vol. 13, no. 2, pp. 179–197.

    Google Scholar 

  86. Kuznetsov, V.V., Conditions of heat and mass transfer at liquid-gas interface under diffusional evaporation, J. Sib. Fed. Univ., Mat. Fiz., 2010, vol. 3, no. 2, pp. 216–227.

    Google Scholar 

  87. Fried, E., Gurtin, M.E., and Shen, A.Q., Theory for solvent, momentum, and energy transfer between a surfactant solution and a vapor atmosphere, Phys. Rev. E, 2006, vol. 73, p. 061601.

    ADS  Google Scholar 

  88. Gatapova, E.Ya. and Kabov, O.A., Slip effect on shear-driven evaporating liquid film in microchannel, Microgravity Sci. Technol., 2007, vol. 19, nos. 3–4, pp. 132–134.

    ADS  Google Scholar 

  89. Sharypov, F., Heat transfer in the Knudsen layer, Phys. Rev. E, 2004, vol. 69, p. 061201.

    ADS  Google Scholar 

  90. Mazhukin, V.I., Prudkovskii, P.A., and Samokhin, A.A., On gas-dynamic boundary conditions at front of evaporation, Mat. Model., 1993, no. 5 (6), pp. 3–10.

    MathSciNet  Google Scholar 

  91. Frezzotti, A., Boundary conditions at the vapor - liquid interface, Phys. Fluids, 2011, vol. 23, p. 030609.

    ADS  MATH  Google Scholar 

  92. Ghez, R., Irreversible thermodynamics of a stationary interface, Surf. Sci., 1970, vol. 20, pp. 326–334.

    ADS  Google Scholar 

  93. Slattery, J.C., Interfacial Transport Phenomena, New York: Springer, 1990.

    MATH  Google Scholar 

  94. Ghez, R., A generalized Gibbsian surface, Surf. Sci., 1966, vol. 4, pp. 125–140.

    ADS  Google Scholar 

  95. Kutepov, A.M., Sterman, L.S., and Styushin, N.G., Gidrodinamika i teploobmen pri paroobrazovanii (Hydrodynamics and Heat Exchange under Evaporation), Moscow: Vysshaya Shkola, 1986.

    Google Scholar 

  96. Kutateladze, S.S., Teploperedacha pri kondensatsii i kipenii (Heat Transfer under Condensation and Boiling), Moscow, Leningrad: MashGiz, 1952.

    Google Scholar 

  97. Sterman, L.S., On the theory of heat emission under liquid boiling, Zh. Tekh. Fiz., 1953, vol. 23, no. 2, pp. 341–351.

    Google Scholar 

  98. Sterman, L.S., On the theory of heat exchange under boiling in pipes, Zh. Tekh. Fiz., 1954, vol. 24, no. 2, pp. 250–257.

    Google Scholar 

  99. Nigmatulin, R.I., Dinamika mnogofaznykh sred (Dynamics of Multi-Phase Media), Moscow: Nauka, 1987, part 1.

  100. Nigmatulin, R.I., Dinamika mnogofaznykh sred (Dynamics of Multi-Phase Media), Moscow: Nauka, 1987, part 2.

  101. Gorban, A.N., Sargsyan, H.P., and Wahab, H.A., Quasichemical models of multicomponent nonlinear diffusion, Math. Modell. Nat. Phenom., 2011, vol. 6, no. 5, pp. 184–262.

    MathSciNet  MATH  Google Scholar 

  102. Gibbs, J.W., Elementary Principles in Statistical Mechanics, New York: C. Scribner’s Sons, 1902.

    MATH  Google Scholar 

  103. Protod’yakonov, I.O. and Bogdanov, S.R., Statisticheskaya teoriya yavlenii perenosa v protsessakh khimicheskoi tekhnologii (Statistical Theory of Transfer Phenomena for Processes of Chemical Technology), Leningrad: Khimiya, 1983.

    Google Scholar 

  104. Kholpanov, L.P. and Shkadov, V.Ya., Gidrodinamika i teplomassoobmen s poverkhnost’yu razdela (Hydrodynamics and Heat and Mass Exchange with Interface), Moscow: Nauka, 1990.

    Google Scholar 

  105. Rietema, K., Science and technology of dispersed two-phase systems, Chem. Eng. Sci., 1982, vol. 37, no. 8, pp. 1125–1150.

    Google Scholar 

  106. Broadwell, J.E., Study of rarefied shear flow by the discrete velocity method, J. Fluid Mech., 1964, vol. 19, pp. 401–414.

    ADS  MathSciNet  MATH  Google Scholar 

  107. Qian, Y.-H., d’Humieres, D., and Lallemand, P., Lattice BGK models for Navie-Stokes equation, Europhys. Lett., 1992, vol. 17, no. 6, pp. 479–484.

    ADS  MATH  Google Scholar 

  108. Lallemand, P. and Luo, L.-S., Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance and stability, Phys. Rev. E, 2000, vol. 61, no. 6, pp. 6546–6562.

    ADS  MathSciNet  Google Scholar 

  109. Koelman, J.M.V.A., A simple lattice Boltzmann scheme for Navier-Stokes fluid flow, Europhys. Lett., 1991, vol. 15, no. 6, pp. 603–607.

    ADS  Google Scholar 

  110. Kupershtokh, A.L., The way for considering volumetric forces in lattice Boltzmann equations, Vestn. Novosib. Gos. Univ. Ser.: Mat., Mekh., Inf., 2004, vol. 4, no. 2, pp. 75–96.

    MATH  Google Scholar 

  111. Wolfram, S., Cellular automaton fluids 1: Basic theory, J. Stat. Phys., 1986, vol. 45, nos. 3–4, pp. 471–526.

    ADS  MathSciNet  MATH  Google Scholar 

  112. Chen, S. and Doolen, G.D., Lattice Boltzmann method for fluid flow, Annu. Rev. Fluid Mech., 1998, vol. 30, pp. 329–364.

    ADS  MathSciNet  MATH  Google Scholar 

  113. Alexander, F.J., Chen, S., and Sterling, J.D., Lattice Boltzmann thermohydrodynamics, Phys. Rev. E, 1993, vol. 47, no. 4, pp. R2249–R2252.

    ADS  Google Scholar 

  114. Shan, X., Simulation of Rayleigh-Benard convection using a lattice Boltzmann method, Phys. Rev. E, 1997, vol. 55, no. 3, pp. 2780–2788.

    ADS  Google Scholar 

  115. Zhang, R. and Chen, H., Lattice Boltzmann method for simulations of liquid-vapor thermal flows, Phys. Rev. E, 2003, vol. 67, no. 6, p. 066711.

    ADS  Google Scholar 

  116. Kupershtokh, A.L., The way for simulating flows with liquid-vapor interface by using lattice Boltzmann equations, Vestn. Novosib. Gos. Univ. Ser.: Mat., Mekh., Inf., 2005, vol. 5, no. 3, pp. 29–42.

    MATH  Google Scholar 

  117. Kupershtokh, A.L., Medvedev, D.A., and Karpov, D.I., On equations of state in a lattice Boltzmann method, Comput. Math. Appl., 2009, vol. 58, no. 5, pp. R965–R974.

    MathSciNet  MATH  Google Scholar 

  118. Krahl, R., Adamov, M., Aviles, M.L., et al., A model for two phase flow with evaporation, Preprint of Weierstrass- Institut fuer Angewandte Analysis und Stochastik im Forschungsverbund Berlin, Berlin, 2004, no. 899.

  119. Kuznetsov, V.V., Heat and mass transfer on a liquid–vapor interface, Fluid Dyn., 2011, vol. 46, no. 5, pp. 754–763.

    ADS  MathSciNet  MATH  Google Scholar 

  120. Das, K.S. and Ward, C.A., Surface thermal capacity and its effects on the boundary conditions at fluid-fluid interfaces, Phys. Rev. E, 2007, vol. 75, p. 065303.

    ADS  Google Scholar 

  121. Iorio, C.S., Goncharova, O.N., and Kabov, O.A., Heat and mass transfer control by evaporative thermal pattering of thin liquid layers, Comput. Therm. Sci., 2011, vol. 3, no. 4, pp. 333–342.

    Google Scholar 

  122. Goncharova, O.N., Simulation of flows under the conditions of heat and mass transfer at interface, Izv. Altai. Gos. Univ., 2012, no. 73 (1/2), pp. 12–18.

    Google Scholar 

  123. Andreev, V.K., Gaponenko, Yu.V., Goncharova, O.N., et al., Sovremennye matematicheskie modeli konvektsii (Modern Mathematical Models of Convection), Moscow: Fizmatlit, 2008.

    MATH  Google Scholar 

  124. Dufay, R. and Prigogine, I., Surface Tension and Adsorption, New York: John Wiley and Sons, 1966.

    Google Scholar 

  125. Kuznetsov, V.V., Bartashevich, M.V., and Kabov, O.A., Interfacial balance equations for diffusion evaporation and exact solution for weightless drop, Microgravity Sci. Technol., 2012, vol. 24, pp. 17–31.

    ADS  Google Scholar 

  126. Finn, R., On the steady-state solutions of the Navier-Stokes equations. III, Acta Math., 1961, vol. 105, nos. 3–4, pp. 197–244.

    MathSciNet  MATH  Google Scholar 

  127. Korobkov, M.V., Piletskas, K., Pukhnachev, V.V., et al., Problem on flow for the Navier-Stokes equations, Usp. Mat. Nauk, 2014, vol. 69, no. 6 (420), pp. 115–176.

    Google Scholar 

  128. Puknachov, V.V., Thermocapillary convection under low gravity, Fluid Dyn. Trans., 1989, vol. 14, pp. 140–204.

    ADS  Google Scholar 

  129. Myshkis, A.D., Babskii, V.G., Kopachevskii, N.D., et al., Low-Gravity Fluid Mechanics, Berlin, Heidelberg: Springer, 1987.

    Google Scholar 

  130. Zebib, A., Homsy, G.M., and Meiburg, E., High Marangoni number convection in a square cavity, Phys. Fluids, 1985, vol. 28, no. 12, pp. 3467–3476.

    ADS  MathSciNet  MATH  Google Scholar 

  131. Andreev, V.K., Zakhvataev, V.E., and Ryabitskii, E.A., Termokapillyarnaya neustoichivost' (Thermocapillary Instability), Novosibirsk: Nauka, 2000.

    Google Scholar 

  132. Bratukhin, Yu.K. and Makarov, S.O., Mezhfaznaya konvektsiya (Interphase Convection), Perm: Perm State Univ., 1994.

    Google Scholar 

  133. Voyutskii, S.S., Kurs kolloidnoi khimii (Course of Colloid Chemistry), Moscow: Khimiya, 1975.

    Google Scholar 

  134. Latyshev, A.V. and Yushkanov, A.A., Precise solution of Boltzmann equation with BGK collision operator in problem on weak evaporation, Mat. Model., 1990, vol. 2, no. 6, pp. 55–63.

    MathSciNet  MATH  Google Scholar 

  135. Kuznetsov, V.V. and Andreev, V.K., The liquid film and gas flow motion in a microchannel with evaporation, Thermophys. Aeromech., 2013, vol. 20, no. 1, pp. 17–28.

    ADS  Google Scholar 

  136. Ostroumov, G.A., Svobodnaya konvektsiya v usloviyakh vnutrennei zadachi (Free Convection under the Conditions of Internal Problem), Moscow, Leningrad: Gostekhizdat, 1952.

    Google Scholar 

  137. Birikh, R.V., On thermocapillary convection in horizontal liquid layer, Prikl. Mekh. Tekh. Fiz., 1966, no. 3, pp. 69–72.

    Google Scholar 

  138. Shliomis, M.I. and Yakushin, V.I., Convection in two-layer binary system with evaporation, Uch. Zap. Permsk. Univ. Ser.: Gidrodin., 1972, no. 4, pp. 129–140.

    Google Scholar 

  139. Goncharova, O.N., Hennenberg, M., Rezanova, E.V., and Kabov, O.A., Modeling of the convective fluid flows with evaporation in the two-layer systems, Interfacial Phenom. Heat Transfer, 2013, vol. 1, no. 3, pp. 317–338.

    Google Scholar 

  140. Goncharova, O.N. and Rezanova, E.V., Example of an exact solution of the stationary problem of two-layer flows with evaporation at the interface, J. Appl. Mech. Tech. Phys., 2014, vol. 55, no. 2, pp. 247–257.

    ADS  MathSciNet  MATH  Google Scholar 

  141. Goncharova, O.N., Rezanova, E.V., Lyulin, Yu.V., et al., Modeling of two-layer liquid-gas flow with account for evaporation, Thermophys. Aeromech., 2015, vol. 22, no. 5, pp. 631–638.

    ADS  Google Scholar 

  142. Bekezhanova, V.B. and Goncharova, O.N., Stability of the exact solutions describing the two-layer flows with evaporation at interface, Fluid Dyn. Res., 2016, vol. 48, no. 6, p. 061408.

    ADS  MathSciNet  Google Scholar 

  143. Bekezhanova, V.B., Goncharova, O.N., Rezanova, E.V., et al., Stability of two-layer fluid flows with evaporation at the interface, Fluid Dyn., 2017, vol. 52, no. 2, pp. 189–200.

    MathSciNet  MATH  Google Scholar 

  144. Rezanova, E.V. and Shefer, I.A., How heat load influences onto characteristics of flow with evaporation, Sib. Zh. Ind. Mat., 2017, vol. 20, no. 2 (70), pp. 83–92.

    MATH  Google Scholar 

  145. Goncharova, O.N. and Kabov, O.A., Investigation of the two-layer fluid flows with evaporation at interface on the basis of the exact solutions of the 3D problems of convection, J. Phys.: Conf. Ser., 2016, vol. 754, p. 032008.

    Google Scholar 

  146. Bekezhanova, V.B. and Goncharova, O.N., Three-dimensional thermocapillary flow regimes with evaporation, J. Phys.: Conf. Ser., 2017, vol. 894, p. 012023.

    Google Scholar 

  147. Rodionova, A.V. and Rezanova, E.V., Stability of two-layer fluid flow, J. Appl. Mech. Tech. Phys., 2016, vol. 57, no. 4, pp. 588–597.

    ADS  MathSciNet  MATH  Google Scholar 

  148. Kirdyashkin, A.G., Polezhaev, V.I., and Fedyushkin, A.I., Heat convection in horizontal layer under lateral heat feeding, Prikl. Mekh. Tekh. Fiz., 1983, no. 6, pp. 122–128.

    Google Scholar 

  149. Kirdyashkin, A.G., Thermogravitational and thermocapillary flows in a horizontal liquid layer under the conditions of a horizontal temperature gradient, Int. J. Heat Mass Transfer, 1984, vol. 27, no. 8, pp. 1205–1218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Bekezhanova.

Additional information

Original Russian Text © V.B. Bekezhanova, O.N. Goncharova, 2018, published in Prikladnaya Matematika i Mekhanika, 2018, Vol. 82, No. 2, pp. 219–260.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekezhanova, V.B., Goncharova, O.N. Problems of Evaporative Convection (Review). Fluid Dyn 53 (Suppl 1), S69–S102 (2018). https://doi.org/10.1134/S001546281804016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001546281804016X

Navigation