Skip to main content
Log in

Kinematics of Bulkley–Herschel fluid flow with a free surface during the filling of a channel

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The non-Newtonian fluid flow with a free surface occurring during the filling of a plane channel in the gravity field is modeled. The mathematical formulation of the problem using the rheological Bulkley–Herschel model is presented. A numerical finite-difference algorithm for solving this problem is developed. A parametric investigation of the main characteristics of the process as functions of the control parameters is performed. The effect of the rheological parameters of the fluid on the distribution of the quasisolid motion zones is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Kamal, A.I. Isayev, and S.-J. Lin, InjectionMolding: Technology and Fundamental, Hanser, Munich (2009).

    Book  Google Scholar 

  2. Z. Tadmor, “Molecular Orientation in Injection Molding,” J. Appl. Polymer Sci. 18, 1753 (1974).

    Article  Google Scholar 

  3. R.L. Schmidt, “A Special Mold and Tracer Technique for Studying Shear and Extensional Flows in a Mold Cavity during Injection Molding,” Polymer Eng. Sci. 14, 797 (1974).

    Article  Google Scholar 

  4. A.Ya. Malkin, “The State of Art of the Polymer Rheology: Advances and Problems,” Vysokomolekularnye Soedineniya. Ser. A 51 (1), 106 (2009).

    Google Scholar 

  5. R.B. Bird, G.C. Dai, and B.J. Yarusso, “The Rheology and Flow of Viscoplastic Material,” Rev. Chem. Eng. 1 (1), 1 (1983).

    Article  Google Scholar 

  6. H. Barnes, “The Yield Stress a Review of “Panta Rei”—Everything Flows?” J. Non-Newtonian Fluid Mech. 81, 133 (1999).

    Article  MATH  Google Scholar 

  7. E. Mitsoulis, “Flow Viscoplastic Materials: Model and Computations,” Rheology Reviews 2007, 135 (2007).

    Google Scholar 

  8. D.J. Coyle, J.W. Blake, and C.W. Macosco, “The Kinematics of Fountain Flow in Mold-Filling,” AIChE J. 33, 1168 (1987).

    Article  Google Scholar 

  9. M.R. Kamal, S.K. Coyal, and E. Chu, “Simulation of InjectionMold Filling of Viscoelastic Polymer with Fountain Flow,” AIChE J. 34, 94 (1988).

    Article  Google Scholar 

  10. E. Mitsoulis, “Fountain Flow Revisited: The Effect of Various Fluid Mechanics Parameters,” AIChE J. 56, 1147 (2010).

    Google Scholar 

  11. E.I. Borzenko, O.Yu. Frolov, and G.R. Shrager, “Fountain Viscous Fluid Flow during Filling a Channel when Taking Dissipative Warming into Account,” Fluid Dynamics, 49 (1), 37 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  12. E.I. Borzenko and G.R. Shrager, “Effect of Viscous Dissipation on Temperature, Viscosity, and Flow Parameters while Filling a Channel,” Thermophys. Aeromechanics 21 (2), 221 (2014).

    Article  ADS  Google Scholar 

  13. E.I. Borzenko, O.Yu. Frolov, and G.R. Shrager, “Fountain Nonisothermal Flow of a Viscous Fluid during the Filling of a Circular Tube,” Theor. Found. Chem. Eng. 48, 824 (2014).

    Article  MATH  Google Scholar 

  14. W. Rose, “Fluid-Fluid Interfaces in Steady Motion,” Nature 191, 242 (1961).

    Article  ADS  Google Scholar 

  15. R. El Otmani, M. Zinet, M. Boutaous, P. Chantrenne, and H. Behhadid, “Numerical Simulation of the Filling Phase in the Polymer Injection Moulding Process with Conservative Level Set Method,” Int. J. Mater. Form. 1 (1), 731 (2008).

    Article  Google Scholar 

  16. V.K. Bulgakov, A.M. Lipanov, and K.A. Chekonin, “Filling the Region between Vertical Coaxial Cylinders of an Anomalously Viscous Fluid under Nonisothermal Conditions,” J. Eng. Phys. 57, 1169 (1989).

    Article  Google Scholar 

  17. M.Yu. Al’es, Yu.N. Konstantinov, and A.M. Lipanov, “Numerical Simulation of Creep Flows of Non-Newtonian Fluids with a Free Surface,” Mat. Model. 5 (7), 3 (1993).

    MATH  MathSciNet  Google Scholar 

  18. E.I. Borzenko, G.R. Shrager, and V.A. Yakutenok, “Filling of Channels with a Non-Newtonian Fluid in the Gravity Field,” Fluid Dynamics 44 (6), 830 (2009).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. H. Mavridis, A.N. Hrymak, and J. Vlachopoulos, “Finite Element Simulation of Fountain Flow in InjectionMolding,” Polymer Eng. Sci. 26, 449 (1986).

    Article  Google Scholar 

  20. C.G. Costas and Chien-Fong Huang, “The Process of Cavity Filling Including the Fountain Flow in Injection Molding,” Polymer Eng. Sci. 26, 1457 (1986).

    Article  Google Scholar 

  21. E. Mitsoulis, “Fountain Flow of Pseudoplastic and Viscoplastic Fluids,” J. Non-Newtonian Fluid Mech. 165, 45 (2010).

    Article  MATH  Google Scholar 

  22. F.H. Harlow and J.E. Welch, “Numerical calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface,” Phys. Fluids 8, 2182 (1965).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. C.W. Hirt, A.A. Amsden, and J.L. Cook, “An Arbitrary Lagrangian–Eulerian Computing Method for all Flow Species,” J. Comput. Phys. 14, 227 (1974).

    Article  ADS  MATH  Google Scholar 

  24. C.W. Hirt and B.D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” J. Comput. Phys. 39, 201 (1981).

    Article  ADS  MATH  Google Scholar 

  25. S.J. Osher and J.A. Sethian, “Fronts Propagating with Curvature-Dependent Speed-Algorithms Based on Hamilton–Jacobi Formulations,” J. Comput. Phys. 79, 12 (1988).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. E.G. Tompson, L.R. Mack, and F.S. Lin, “Finite Element Method for Incompressible Slow Viscous Flow with Free Surface,” Dev. Mech. 5, 93 (1965).

    Google Scholar 

  27. D. Kothe, D. Juric, K. Lam, and B. Lally, “Numerical Recipes for Molding Filling Simulation,” in: The 8th Intern. Conf. on the Modeling of Casting, Welding and Advance Solidification Processes (MCWASP), San Diego, Ca, July 1988 (1988).

    Google Scholar 

  28. Y.D. Shikhmurzaev, “Some Dry Facts about DynamicWetting,” Eur. Phys. J. Spec. Topics 197, 47 (2011).

    Article  ADS  Google Scholar 

  29. T.D. Blake, “Discussion Notes: A More Collaborative Approach to the Moving Contact Line Problem?” Eur. Phys. J. Spec. Topics 197, 343 (2011).

    Article  ADS  Google Scholar 

  30. E.I. Borzenko and G.R. Shrager, “Effect of the Type of Boundary Conditions on the Three-Phase Contact Line on the Flow Characteristics during Filling of the Channel,” J. Appl. Mech. Techn. Phys. 56 (2), 167 (2015).

    Article  ADS  Google Scholar 

  31. M. Bercovier and M. Engleman, “A Finite-Element Method for Incompressible Non-Newtonian Flows,” J. Comput. Phys. 36 (3), 313 (1980).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. T.C. Papanastasiou, “Flows of Material with Yield,” J. Rheol. 31, 385 (1987).

    Article  ADS  MATH  Google Scholar 

  33. I.A. Frigaard and C. Nouar, “On the Usage of Viscosity Regularization Methods for Visco-Plastic Fluid Flow Computation,” J. Non-Newtonian Fluid Mech. 127, 1 (2005).

    Article  MATH  Google Scholar 

  34. W.H. Herschel and R. Bulkley, “Konsistenzmessungen von Gummi-Benzol-Loesungen,” Kolloid Zeitschrift 39 (4), 291 (1926).

    Article  Google Scholar 

  35. Z.P. Shul’man, Convective Heat and Mass Transfer of Reologhically Complex Fluids [in Russian], Energiya, Moscow (1975).

    Google Scholar 

  36. H. Mavridis, A.N. Hrymak, and J. Vlachopoulos, “Mathematical Modeling of InjectionMold Filling: A Review,” Adv. Polymer Technol. 6, 457 (1986).

    Article  Google Scholar 

  37. C.S. Li, C.F. Hung, and Y.K. Shen, “Computer Simulation and Analysis of Fountain Flow and Filling Process in Injection Molting,” J. Polymer Res. 1 (2), 163 (1994).

    Article  Google Scholar 

  38. C. Huh and L.E. Scriven, “Hydrodynamic Model of Steady Movement of a Solid/Liquid/Fluid Contact Line,” J. Colloid Interface Sci. 35 (1), 85 (1971).

    Article  ADS  Google Scholar 

  39. V.V. Pukhnachev and V.A. Solonnikov, “On the Problem of Dynamic Contact Angle,” J. Appl. Math. Mech. 46 (6), 961 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  40. S. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York (1980).

    MATH  Google Scholar 

  41. I.M. Vasenin, O.K. Sidonskii, and G.R. Shrager, “Numerical Solution of the Problem of Viscous Fluid Motion with a Free Boundary,” Dokl. Akad. Nauk SSSR 217, 295 (1974).

    ADS  Google Scholar 

  42. E.I. Borzenko and G.R. Shrager, “Flow of a Non-Newtonian Liquid with a Free Surface,” J. Eng. Phys. Thermophys. 89, 902 (2016).

    Article  Google Scholar 

  43. E.I. Borzenko, G.R. Shrager, and V.A. Yakutenok, “Simulation of the Process of the Filling of Planar Channels with Viscoplastic Fluid,” Theor. Found. Chem. Eng. 45, 173 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Borzenko.

Additional information

Original Russian Text © E.I. Borzenko, I.A. Ryl’tsev, G.R. Shrager, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2017, No. 5, pp. 53–64.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzenko, E.I., Ryl’tsev, I.A. & Shrager, G.R. Kinematics of Bulkley–Herschel fluid flow with a free surface during the filling of a channel. Fluid Dyn 52, 646–656 (2017). https://doi.org/10.1134/S0015462817050064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462817050064

Keywords

Navigation