Skip to main content
Log in

Flow of a Non-Newtonian Liquid with a Free Surface

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A fountain flow of a non-Newtonian liquid filling a vertical plane channel was investigated. The problem of this flow was solved by the finite-difference method on the basis of a system of complete equations of motion with natural boundary conditions on the free surface of the liquid. The stability of calculations was provided by regularization of the rheological Ostwald–de Waele law. It is shown that the indicated flow is divided into a zone of two-dimensional flow in the neighborhood of the free surface and a zone of one-dimensional flow at a distance from this surface. A parametric investigation of the dependence of the kinetic characteristics of the fountain flow and the behavior of its free surface on the determining criteria of this flow and its rheological parameters has been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Rose, Fluid–fluid interfaces in steady motion, Nature, 191, 242–243 (1961).

    Article  Google Scholar 

  2. M. R. Kamal, A. I. Isayev, and S.-J. Liu, Injection Molding, Carl Hanser Verlag GmbH & Co. KG, Munich (2009).

    Book  Google Scholar 

  3. D. J. Coyle, J. W. Blake, and C. W. Macosco, The kinematics of fountain flow in mold-filling, AIChE J., 33, No. 7, 1168–1177 (1987).

    Article  Google Scholar 

  4. M. R. Kamal, S. K. Coyal, and E. Chu, Simulation of injection mold filling of viscoelastic polymer with fountain flow, AIChE J., 34, No. 1, 94–106 (1988).

    Article  Google Scholar 

  5. E. Mitsoulis, Fountain flow revisited: The effect of various fluid mechanics parameters, AIChE J., 56, No. 5, 1147–1162 (2010).

    Google Scholar 

  6. E. I. Borzenko, O. Yu. Frolov, and G. R. Shrager, Fountain viscous fluid flow during filling a channel when taking dissipative warming into account, Fluid Dyn., 49, No. 1, 37–45 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  7. E. I. Borzenko and G. R. Shrager, Effect of viscous dissipation on temperature, viscosity, and flow parameters while filling a channel, Thermophys. Aeromech., 21, No. 2, 211–221 (2014).

    Article  Google Scholar 

  8. E. I. Borzenko, O. Yu. Frolov, and G. R. Shrager, Fountain nonisothermal flow of a viscous liquid during the filling of a circular tube, Theor. Found. Chem. Eng., 48, No. 6, 824–831 (2014).

    Article  MATH  Google Scholar 

  9. C. W. Hirt, A. A. Amsden, and J. L. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comp. Phys., 14, No 3, 227–253 (1974).

    Article  MATH  Google Scholar 

  10. C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys., 39, No. 1, 201–225 (1981).

    Article  MATH  Google Scholar 

  11. S. J. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed-algorithms based on Hamilton–Jacobi formulations, J. Comp. Phys., 79, No. 1, 12–49 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  12. R. El Otmani, M. Zinet, M. Boutauos, P. Chantrenne, and H. Benhadid, Numerical simulation of the filling phase in the polymer injection moulding process with conservative level set method, Int. J. Mater. Form., 1 (Suppl. 1), 731–734 (2008).

    Article  Google Scholar 

  13. V. K. Bulgakov, A. M. Lipanov, and K. A. Chekonin, Filling the region between vertical coaxial cylinders of an anomalously viscous fluid under nonisothermal conditions, J. Eng. Phys., 57, No. 4, 1169–1175 (1989).

    Article  Google Scholar 

  14. M. Yu. Al′es, Yu. N. Konstantinov, and A. M. Lipanov, Numerical simulation of creeping flows of non-Newtonian fluids with a free surface, Mat. Modelir., 5, No. 7, 3–9 (1993).

    MATH  Google Scholar 

  15. E. I. Borzenko, G. R. Shrager, and V. A. Yakutenok, Filling of channels with a non-Newtonian fluid in the gravity field, Fluid Dyn., 44, No. 6, 830–835 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Mavridis, A. N. Hrymak, and J. Vlachopoulos, Finite element simulation of fountain flow in injection molding, Polym. Eng. Sci., 26, No. 7, 449–454 (1986).

    Article  Google Scholar 

  17. Costas G. Gogos and Chien-Fong Huang, The process of cavity filling including the fountain flow in injection molding, Polym. Eng. Sci., 26, No. 20, 1457–1466 (1986).

    Article  Google Scholar 

  18. E. Mitsoulis, Fountain flow of pseudoplastic and viscoplastic fluids, J. Non-Newtonian Fluid Mech., 165, 45–55 (2010).

    Article  MATH  Google Scholar 

  19. Z. P. Shul′man, Convective Heat and Mass Transfer of Rheologically Complex Liquids [in Russian], Énergiya, Moscow (1975).

    Google Scholar 

  20. H. Mavridis, A. N. Hrymak, and J. Vlachopoulos, Mathematical modeling of injection mold filling: A Review, Adv. Polym. Technol., 6, No. 4, 457–466 (1986).

    Article  Google Scholar 

  21. C. S. Li, C. F. Hung, and Y. K. Shen, Computer simulation and analysis of fountain flow and filling process in injection molding, J. Polym. Res., 1, No. 2, 163–173 (1994).

    Article  Google Scholar 

  22. C. Huh and L. E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interface Sci., 35, No 1, 85–101 (1971).

    Article  Google Scholar 

  23. V. V. Pukhnachev and V. A. Solonnikov, On the problem of dynamic contact angle, J. Appl. Math. Mech., 46, No. 6, 771–779 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  24. E. I. Borzenko and G. R. Shrager, Effect of the type of boundary conditions on the three-phase contact line on the flow characteristics during filling of the channel, J. Appl. Mech. Tech. Phys., 56, No. 2, 167–176 (2015).

    Article  Google Scholar 

  25. S. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, New York (1980).

    MATH  Google Scholar 

  26. I. M. Vasenin, O. B. Sidonskii, and G. R. Shrager, Numerical solution of the problem on the movement of a viscous fluid with a free surface, Dokl. Akad. Nauk SSSR, 217, No. 2, 295–298 (1974).

    Google Scholar 

  27. I. A. Frigaard and C. Nouar, On the usage of viscosity regularization method for visco-plastic fluid flow computation, J. Non-Newtonian Fluid Mech., 127, 1–26 (2005).

    Article  MATH  Google Scholar 

  28. G. R. Shrager, A. N. Kozlobrodov, and V. A. Yakutenok, Simulation of the Hydrodynamic Processes in the Technology of Processing of Polymeric Materials [in Russian], Izd. Tomsk. Univ., Tomsk (1999).

    Google Scholar 

  29. I. A. Glushkov, Yu. M. Milekhin, V. M. Merkulov, and Yu. B. Banzula, Simulation of the Molding of Products from Free-Casting Composites [in Russian], Arkhitektura-S, Moscow (2007).

    Google Scholar 

  30. W. L. Wilkinson, Non-Newtonian Fluids [Russian translation], Mir, Moscow (1964).

    Google Scholar 

  31. K. K. Wang, S. F. Shen, C. Cohen, C. A. Hieber, and S. Jahanmir, Computer-Aided Injection Molding System, Report 5, Cornell University (1978).

  32. R. A. Behrens, M. J. Crochet, C. D. Denson, and A. B. Metzner, Transient free surface flows: motion of a fluid advancing in a tube, AIChE J., 33, No. 7, 1178–1186 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Borzenko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 4, pp. 901–909, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzenko, E.I., Shrager, G.R. Flow of a Non-Newtonian Liquid with a Free Surface. J Eng Phys Thermophy 89, 902–910 (2016). https://doi.org/10.1007/s10891-016-1452-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1452-2

Keywords

Navigation