Skip to main content
Log in

Asymptotic models of solidification in cooling thin-layer flows of a highly viscous fluid

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Asymptotic models are constructed for the solidification process in a highly viscous film flow on the surface of a cone with a given mass supply at the cone apex. In the thin-layer approximation, the problem is reduced to two parabolic equations for the temperatures of the liquid and the solid coupled with an ordinary differential equation for the solidification front. For large Péclet numbers, an analytical steady-state solution for the solidification front is found. A nondimensional parameter which makes it possible to distinguish flows (i) without a solid crust, (ii) with a steady-state solid crust, and (iii) with complete solidification is determined. For finite Péclet numbers and large Stefan numbers, an analytical transient solution is found and the time of complete flow solidification is determined. In the general case, when all the governing parameters are of the order of unity, the original system of equations is studied numerically. The solutions obtained are qualitatively compared with the data of field observations for lava flows produced by extrusive volcanic eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Oron, S.H. Davis, and S.G. Bankoff, “Long-Scale Evolution of Thin Liquid Films,” Rev. Mod. Phys. 324, 261–286 (1996).

    Google Scholar 

  2. J.R. King, D.S. Riley, and A. Sansom, “Gravity Currents with Temperature-Dependent Viscosity,” Comp. Assist. Mech. Eng. Sci. 7, 251–277 (2000).

    MATH  Google Scholar 

  3. A. Sansom, J.R. King, and D.S. Riley, “Degenerate-Diffusion Models for the Spreading of Thin Non-Isothermal Gravity Currents,” J. Eng. Math. 48, 43–68 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Bercovici, “A Theoretical Model of Cooling Viscous Gravity Currents with Temperature Dependent Viscosity,” Geophys. Res. Lett. 21, 1177–1180 (1994).

    Article  ADS  Google Scholar 

  5. N.J. Balmforth and R.V. Craster, “Dynamics of Cooling Domes of Viscoplastic Fluid,” J. Fluid Mech. 422, 225–248 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. N.J. Balmforth, R.V. Craster, and R. Sassi, “Dynamics of Cooling Viscoplastic Domes,” J. Fluid Mech. 499, 149–182 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. T.G. Myers, J.P.F. Charpin, and S.J. Chapman, “The Flow and Solidification of a Thin Film on an Arbitrary Three-Dimensional Surface,” Phys. Fluids 14, 2788–2803 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  8. W.R. Smith, “The Propagation and Basal Solidification of Two-Dimensional and Axisymmetric Viscous Gravity Currents,” J. Eng. Math. 50, 359–378 (2004).

    Article  MATH  ADS  Google Scholar 

  9. H.E. Huppert, “The Propagation of Two-Dimensional and Axisymmetric Viscous Gravity Currents over a Rigid Horizontal Surface,” J. Fluid Mech. 121, 43–58 (1982).

    Article  ADS  Google Scholar 

  10. R.W. Griffiths, “The Dynamics of Lava Flows,” Annu. Rev. Fluid Mech. 32, 477–518 (2000).

    Article  ADS  Google Scholar 

  11. A.A. Osiptsov, “Non-Isothermal Lava Flows over a Conical Surface,” Fluid Dynamics 40, 221–232 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. J.R. Lister and P.J. Dellar, “Solidification of Pressure-Driven Flow in a Finite Rigid Channel with Application to Volcanic Eruptions,” J. Fluid Mech. 323, 267–283 (1996).

    Article  MATH  ADS  Google Scholar 

  13. P.T. Delaney and D.D. Pollard, “Solidification of Basaltic Magma during Flow in a Dyke,” Amer. J. Sci. 282, 856–885 (1982).

    Article  Google Scholar 

  14. P.M. Bruce and H.E. Huppert, “Thermal Control of Basaltic Fissure Eruptions,” Nature 342, 665–667 (1989).

    Article  ADS  Google Scholar 

  15. J.R. Lister, “The Solidification of Buoyancy-Driven Flow in a Flexible-Walled Channel. Part 1. Constant-Volume Release,” J. Fluid Mech. 272, 21–44 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. J.R. Lister, “The Solidification of Buoyancy-Driven Flow in a Flexible-Walled Channel. Part 1. Continual Release,” J. Fluid Mech. 272, 45–65 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  17. L.G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  18. A.A. Osiptsov, “Steady Film Flow of a Highly Viscous Heavy Fluid with Mass Supply,” Fluid Dynamics 38, 846–853 (2003).

    Article  MATH  ADS  Google Scholar 

  19. L. Graetz, “Über die Wärmeleitungsfähigkeit von Flüssigkeiten,” Ann. Phys. Chem. 25, 337–357 (1885).

    ADS  Google Scholar 

  20. W. Nusselt, “Die Abhängigkeit der Wärmeübergangszahl von der Rohrlänge,” Z. Ver. Deut. Ing. 54, 1154–1158 (1910).

    Google Scholar 

  21. M. Epstein and F.B. Cheung, “Complex Freezing-Melting Interfaces in Fluid Flow,” Annu. Rev. Fluid Mech. 15, 293–319 (1983).

    Article  ADS  Google Scholar 

  22. R.D. Zerkle R.D. and J.E. Sunderland, “The Effect of Liquid Solidification in a Tube upon Laminar-Flow Heat Transfer and Pressure Drop,” J. Heat Transfer 90, 183–190 (1968).

    Google Scholar 

  23. M.A. Lévêque, “Les Lois de la Transmission de Chaleur par Convection,” Ann. Mines Mem. 13, 201–299, 305–362, 381–415 (1928).

    Google Scholar 

  24. F. Olver, Asymptotics and Special Functions (Acad. Press, New York, 1974).

    Google Scholar 

  25. Handbook of Mathematical Functions (Eds. M. Abramowitz and I. Stegun) (Nation. Bureau Stand., Appl. Math. Ser. 55, 1964).

  26. C.A.J. Fletcher, Computational Techniques for Fluid Dynamics. V. 1. (Springer-Verlag, Berlin et al., 1988).

    Google Scholar 

  27. D.W. Peterson D.W., R.T. Hollcomb, R.I. Tilling, and R.L. Christiansen, “Development of Lava Tubes in the Light of Observations at Mauna Ulu, Kilauea Volcano, Hawaii,” Bull. Volcanol. 56, 343–360 (1994).

    ADS  Google Scholar 

  28. P.W. Lipman and N.G. Banks, “A Flow Dynamics, Mauna Loa 1984,” US Geol. Surv. Prof. Pap. 1350, 1527–1567 (1987).

    Google Scholar 

  29. K.V. Cashman, H. Pinkerton, and P.J. Stephenson, “Long Lava Flows,” J. Geophys. Res. 103, 27281–89 (1998).

    Article  ADS  Google Scholar 

  30. M. Van-Dyke, Perturbation Methods in Fluid Mechanics (Acad. Press, New York, London, 1964).

    MATH  Google Scholar 

  31. R.W. Griffiths, R.S. Kerr, and K.V. Cashman, “Patterns of Solidification in Channel Flows with Surface Cooling,” J. Fluid Mech. 496, 33–62 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. A.J.L. Harris and S.K. Rowland, “FLOWGO: a Kinematic Thermo-Rheological Model for Lava Flowing in a Channel,” Bull. Volcanol. 63, 20–44 (2001).

    Article  ADS  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © A.A. Osiptsov, 2007, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2007, Vol. 42, No. 2, pp. 24–38.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osiptsov, A.A. Asymptotic models of solidification in cooling thin-layer flows of a highly viscous fluid. Fluid Dyn 42, 170–183 (2007). https://doi.org/10.1134/S0015462807020032

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462807020032

Keywords

Navigation