Skip to main content
Log in

Morphological Variability of the Satyrid Butterflies, Aphantopus hyperantus and Erebia ligea (Lepidoptera, Satyridae) in Allopatric and Allochronous Micropopulations

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

The variability of morphological traits (the shape and size of the forewing and the location, number, and diameter of eyespots in the submarginal band of the wing pattern) was studied and analyzed in two species of Satyridae, Aphantopus hyperantus (Linnaeus, 1758) and Erebia ligea (Linnaeus, 1758), occurring sympatrically in Sverdlovsk Province, the Urals. It was originally supposed that micropopulations of the univoltine generalist species A. hyperantus would be weakly isolated and phenotypically homogeneous, since their habitats were positioned a small distance apart (about 10 km) within the same forested area and connected by a network of roads and glades serving as potential dispersal corridors; in contrast, micropopulations of the bicyclic specialist species E. ligea would be more strongly isolated and, accordingly, would have a higher level of phenotypic differentiation. The variability of morphological traits was analyzed by phenetic methods and also by traditional and geometric morphometrics. In both species, significant differences between micropopulations were found in the wing shape and size, as well as in the location and stability of eyespots in the wing pattern. As expected, temporal and spatial isolation of the micropopulations has led to differentiation in E. ligea. At the same time, the initial hypothesis of homogeneity of the A. hyperantus population in the studied territory was not confirmed. The latter case demonstrates that spatial isolation may be sufficient for differentiation in a species that is significantly sedentary and does not fully use the existing dispersal corridors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Adakhovsky, D.A., An ecological characteristic of diurnal butterflies (Lepidoptera, Rhopalocera) of Udmurtia: the topical aspect, Vestn. Udmurt. Univ., 2014, no. 4, p. 44.

    Google Scholar 

  2. Adams, D.C., Rohlf, F.J., and Slice, D.E., Geometric morphometrics: ten years of progress following the “revolution,” Ital. J. Zool., 2004, vol. 71, p. 5.

    Article  Google Scholar 

  3. Atkinson, D., Temperature and organism size – a biological law for ectotherms? Adv. Ecol. Res., 1994, vol. 25, p. 1.

    Article  Google Scholar 

  4. Beldade, P. and Peralta, C.M., Developmental and evolutionary mechanisms shaping butterfly eyespots, Curr. Opin. Insect Sci., 2017, vol. 19, p. 22.

    Article  Google Scholar 

  5. Billeter, R., Sedivy, I., and Diekötter, T., Distribution and dispersal patterns of the ringlet butterfly (Aphantopus hyperantus) in an agricultural landscape, Bull. Geobot. Inst. ETH, 2003, vol. 69, p. 45.

  6. Brakefield, P.M. and van Noordwijk, A.J., The genetics of spot pattern characters in the meadow brown butterfly Maniola jurtina (Lepidoptera: Satyrinae), Heredity, 1985, vol. 54, p. 275.

  7. Breuker, C.J., Gibbs, M., van Dongen, S., Merckx, T., and van Dyck, H., The use of geometric morphometrics in studying butterfly wings in an evolutionary ecological context, in Morphometrics for Nonmorphometricians, Berlin-Heidelberg: Springer, 2010, p. 271.

  8. Cardoso, P., Barton, P.S., Birkhofer, K., Chichorro, F., Deacon, C., et al., Scientists’ warning to humanity on insect extinctions, Biol. Conserv., 2020, vol. 242, art. 108426. https://doi.org/10.1016/j.biocon.2020.108426

  9. Cassel-Lundhagen, A., Tammaru, T., Windig, J.J., Ryrholm, N., and Nylin, S., Are peripheral populations special? Congruent patterns in two butterfly species, Ecography, 2009, vol. 32, p. 591.

    Article  Google Scholar 

  10. Cassel-Lundhagen, A., Schmitt, T., Wahlberg, N., Sarvašová, L., Konvička, M., Ryrholm, N., and Kaňuch, P., Wing morphology of the butterfly Coenonympha arcania in Europe: Traces of both historical isolation in glacial refugia and current adaptation, J. Zool. Syst. Evol. Res., 2020, vol. 58, p. 929. https://doi.org/10.1111/jzs.12360

  11. Dapporto, L., Hardy, P.B., and Dennis, R.L.H., Evidence for adaptive constraints on size of marginal wing spots in the grayling butterfly, Hipparchia semele, Biol. J. Linn. Soc., 2018, vol. 20, p. 1.

  12. Gorbach, V.V., Intrapopulation variability of the wing pattern elements in the ringlet, Aphantopus hyperantus (Lepidoptera, Satyridae), Uch. Zap. Petrozavodsk. Gos. Univ., 2012, no. 6, p. 27.

  13. Gorbach, V.V., Fauna and ecology of butterflies (Lepidoptera: Hesperioidea et Papilionoidea) of Eastern Fennoscandia, Extended Abstract of Doctoral Dissertation in Biology, Petrozavodsk, 2014.

  14. Gorbunov, P. and Kosterin, O., The Butterflies (Hesperioidea and Papilionoidea) of North Asia (Asian Part of Russia) in Nature, Vol. 2, Moscow: Rodina & Fodio, 2007.

  15. Grill, A., Polic, D., Guariento, E., and Fiedler, K., Permeability of habitat edges for Ringlet butterflies (Lepidoptera, Nymphalidae, Erebia Dalman 1816) in an alpine landscape, Nota Lepidopterol., 2020, vol. 43, p. 29.

  16. Gutzwiller, K.J., Ed., Applying Landscape Ecology in Biological Conservation, N.Y.: Springer, 2002.

  17. Habel, J.C., Trusch, R., Schmitt, T., Ochse, M., and Ulrich, W., Long-term large-scale decline in relative abundances of butterfly and burnet moth species across south-western Germany, Sci. Rep., 2019, vol. 9, art. 14921. https://doi.org/10.1038/s41598-019-51424-1

  18. Habel, J.C., Ulrich, W., and Schmitt, T., Butterflies in corridors: quality matters for specialists, Insect Conserv. Diversity, 2020, vol. 13, p. 91.

    Article  Google Scholar 

  19. Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST version 2.17. Paleontological Statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, no. 1, p. 1.

    Google Scholar 

  20. Hanski, I., Metapopulation Ecology, N.Y.: Oxford University Press, 1999.

  21. Jugovic, J., Zupan, S., Bužan, E., and Čelik, T., Variation in the morphology of the wings of the endangered grass-feeding butterfly Coenonympha oedippus (Lepidoptera: Nymphalidae) in response to contrasting habitats, Eur. J. Entomol., 2018, vol. 115, p. 339.

  22. Klingenberg, C.P., MorphoJ: an integrated software package for geometric morphometrics, Mol. Ecol. Resour., 2011, vol. 11, p. 353.

    Article  Google Scholar 

  23. Kodandaramaiah, U., The evolutionary significance of butterfly eyespots, Behav. Ecol., 2011, vol. 22, p. 1264.

    Article  Google Scholar 

  24. Komonen, A., Grapputo, A., Kaitala, V., Kotiaho, J., and Paivinen, J., The role of niche breadth, resource availability and range position on the life history of butterflies, Oikos, 2004, vol. 105, p. 41.

    Article  Google Scholar 

  25. Marcus, J.M., Evo-Devo of butterfly wing patterns, in Evolutionary Developmental Biology, Nuno de la Rosa, L. and Müller, G., Eds., Cham: Springer, 2019, p. 1.

  26. Mitteroecker, P. and Gunz, P., Advances in geometric morphometrics, Evol. Biol., 2009, vol. 36, p. 235.

    Article  Google Scholar 

  27. Mukhin, V.A., Tretyakova, A.S., Teptina, A.Yu., Kutlunina, N.A., Zimnitskaya, S.A., Goncharova, Yu.V., Yudin, M.M., and Berezina, A.Ya., Flora i rastitel’nost’ biologicheskoi stantsii Ural’skogo gosudarstvennogo universiteta: uchebnoe posobie po letnei polevoi praktike dlya studentov biologicheskogo fakul’teta (Flora and Vegetation of the Biological Station of the Ural State University: A Study Guide for the Summer Field Practical Course at the Faculty of Biology), Yekaterinburg: Ural. Univ., 2003.

  28. Nijhout, H.F., A comprehensive model for colour pattern formation in butterflies, Proc. R. Soc. London B, 1990, vol. 239, p. 81.

    Article  Google Scholar 

  29. Novozhenov, Yu.I., Chronographic variability in a population, Zh. Obshch. Biol., 1989, vol. 50, no. 2, p. 171.

    Google Scholar 

  30. Novozhenov, Yu.I., Sexual dimorphism in the color polymorphism of some insect species, Zh. Obshch. Biol., 1997, vol. 58, no. 1, p. 26.

    Google Scholar 

  31. Paučulova, L., Dzurinka, M., Semeláková, M., Csanády, A., and Panigaj, L., Phylogeography, genetic structure and wing pattern variation of Erebia pronoe (Esper, 1780) (Lepidoptera: Nymphalidae) in Europe, Zootaxa, 2018, vol. 4441, no. 2, p. 279.

    Google Scholar 

  32. Pogoda i klimat (Weather and Climate), 2020 (accessed 1.06.2020). http://www.pogodaiklimat.ru/weather.php?id=28440

  33. Pollard, E. and Yates, T.J., Monitoring Butterflies for Ecology and Conservation, London: Chapman and Hall, 1993.

  34. Poniatowski, D., Stuhldreher, G., Löffler, F., Fartmann, T., Patch occupancy of grassland specialists: habitat quality matters more than habitat connectivity, Biol. Conserv., 2018, vol. 225, p. 237.

    Article  Google Scholar 

  35. Powney, G.D., Broaders, L.K., and Oliver, T.H., Towards a measure of functional connectivity: local synchrony matches small scale movements in a woodland edge butterfly, Landscape Ecol., 2012, vol. 27, p. 1109.

    Article  Google Scholar 

  36. Rasband, W.S., ImageJ: Image Processing and Analysis in Java, 2014 (accessed 2.08.2020). https://imagej.nih.gov/ij/

  37. Rohlf, F.J., TpsDig version 2.29, 2017 (accessed 2.08.2020). https://life.bio.sunysb.edu/morph/

  38. Roth, T., Strebel, N., and Amrhein, V., Estimating unbiased phenological trends by adapting site-occupancy models, Ecology, 2014, vol. 95, no. 8, p. 2144.

    Article  Google Scholar 

  39. Ryzhkova, M.V. and Lopatina, E.B., The seasonal development cycle of Aphantopus hyperantus (L.) (Lepidoptera, Nymphalidae: Satyrinae) in Leningrad Province, Entomol. Rev., 2016, vol. 96, no. 7, p. 831.

  40. Saarinen, K. and Jantunen, J., Grassland butterfly fauna under traditional animal husbandry: contrasts in diversity in mown meadows and grazed pastures, Biodiversity Conserv., 2005, vol. 14, p. 3201.

    Article  Google Scholar 

  41. Saarinen, K., Valtonen, A., Jantunen, J., and Saarnio, S., Butterflies and diurnal moths along road verges: does road type affect diversity and abundance? Biol. Conserv., 2005, vol. 123, p. 403.

    Article  Google Scholar 

  42. Sanzana, M.-J., Parra, L.E., Sepúlveda-Zúňiga, E., and Benítez, H.A., Latitudinal gradient effect on the wing geometry of Auca coctei (Guérin) (Lepidoptera, Nymphalidae), Rev. Bras. Entomol., 2013, vol. 57, no. 4, p. 411.

  43. Schielzeth, H. and Nakagawa, S., Nested by design: model fitting and interpretation in a mixed model era, Methods Ecol. Evol., 2013, vol. 4, p. 14.

    Article  Google Scholar 

  44. Schneider, C. and Fry, G., The influence of landscape grain size on butterfly diversity in grasslands, J. Insect Conserv., 2001, vol. 5, p. 163.

    Article  Google Scholar 

  45. Schwanwitsch, B.N., On the groundplan of the wing pattern in nymphalids and certain other families of rhopalocerous Lepidoptera, Proc. Zool. Soc. London Ser. B, 1924, vol. 34, p. 509.

    Article  Google Scholar 

  46. Sekimura, T. and Nijhout, H.F., Eds., Diversity and Evolution of Butterfly Wing Patterns. An Integrative Approach, Singapore: Springer, 2017.

  47. Settele, J., Kudrna, O., Harpke, A., Kühn, I., van Swaay, C., et al., Climatic Risk Atlas of European Butterflies, Sofia–Moscow: Pensoft, 2008.

  48. Sheets, H., IMP: Integrated Morphometrics Package, 2003 (accessed 17.06.2021). https://www.animal-behaviour.de/imp/

  49. Shkurikhin, A.O. and Oslina, T.S., Seasonal variation in the forewing of polyvoltine whites Pieris rapae L. and P. napi L. (Lepidoptera: Pieridae) in the forest-steppe zone of the Southern Urals, Russ. J. Ecol., 2016, no. 3, p. 296.

  50. Sutcliffe, O.L., Thomas, C.D., and Peggie, D., Area-dependant migration by ringlet butterflies generates a mixture of patchy population and metapopulation attributes, Oecologia, 1997, vol. 109, p. 229.

    Article  CAS  Google Scholar 

  51. Valtonen, A. and Saarinen, K., A highway intersection as an alternative habitat for a meadow butterfly: effect of mowing, habitat geometry and roads on the ringlet (Aphantopus hyperantus), Ann. Zool. Fenn., 2005, vol. 42, p. 545.

  52. Van Swaay, C.A.M., Warren, M.S., and Lois, G., Biotope use and trends of European butterflies, J. Insect Conserv., 2006, vol. 10, p. 189.

    Article  Google Scholar 

  53. Vasil’ev, A.G., Vasil’eva, I.A., and Shkurikhin, A.O., Geometricheskaya morfometriya: ot teorii k praktike (Geometric Morphometrics: from Theory to Practice), Moscow: KMK Scientific Press, 2018.

  54. Viljur, M-L. and Teder, T., Disperse or die: Colonisation of transient open habitats in production forests is only weakly dispersal-limited in butterflies, Biol. Conserv., 2018, vol. 218, p. 32.

    Article  Google Scholar 

  55. Warren, B.C.S., Monograph of the Genus Erebia, London: British Museum of Natural History, 1936.

  56. Zakharova, E.Yu., The use of variation spectra in analysis of heterogeneity in natural populations, by the example of Aphantopus hyperantus L. (Lepidoptera, Satyridae), in Bespozvonochnye zhivotnye Yuzhnogo Zaural’ya i sopredel’nykh territorii. Materialy Vseros. konf., 14–16 aprelya 1998 g. (Invertebrates of the Southern Trans-Ural Region and Adjacent Territories: Proc. of All-Russian Conf., April 14–16, 1998), Kurgan: Kurgan. Univ., 1998, p. 146.

  57. Zakharova, E.Yu., Phenotypic variability of eyespots as homologous wing pattern elements in satyrs (Lepidoptera: Nymphalidae: Satyrinae), in Biodiversity and Dynamics of Ecosystems in North Eurasia. Section “Diversity of the fauna of North Eurasia” (August 21–26, 2000), Vol. 3, Part 1, Novosibirsk: IC&G, 2000, p. 113.

  58. Zakharova, E.Yu., Seasonal variability of the wing pattern in Erebia ligea L. (Lepidoptera: Satyridae) in the Middle Urals, in Sovremennye problemy evolyutsii (sbornik dokladov): XXII Lyubishchevskie chteniya (Current Problems of Evolution: Lyubishchev Memorial Lectures, Issue 22), Vol. 2, Ulyanovsk: Ulyanovsk. Gos. Ped. Univ., 2008, p. 30.

  59. Zakharova, E.Yu., Seasonal variability of wing length and eyespots in populations of Erebia ligea (L.) (Lepidoptera, Satyridae) in the Middle Urals, Entomol. Rev., 2010, vol. 90, no. 6, p. 669.

  60. Zakharova, E.Yu. and Shkurikhin, A.O., Wing morphological variation in Erebia ligea (Linnaeus, 1758) (Lepidoptera: Satyridae) bicyclic and univoltine populations in the Urals, Russia, Euroasian Entomol. J., 2017, vol. 16, no. 4, p. 344.

    Google Scholar 

  61. Zakharova, E.Yu. and Tatarinov, A.G., A chronogeographic approach to analysis of variability in a bicyclic species Erebia ligea (L.) (Lepidoptera: Satyridae) in the Urals, Sib. Ekol. Zh., 2016, no. 3, p. 322.

  62. Zelditch, M.L., Swiderski, D.L., Sheets, H.D., and Fink, W.L., Geometric Morphometrics for Biologists: a Primer, New York: Elsevier, 2004.

Download references

ACKNOWLEDGMENTS

We are sincerely grateful to T.S. Oslina, P.V. Rudoiskatel, I.A. Solonkin, Yu.M. Chibiryak, and students of the Ural Federal University for help with material collection.

Funding

This work was carried out within the framework of State research project AAAA-A19-119031890087-7 at the Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Zakharova.

Ethics declarations

The authors declare that they have no conflict of interest. All the applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All the procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharova, E.Y., Shkurikhin, A.O. Morphological Variability of the Satyrid Butterflies, Aphantopus hyperantus and Erebia ligea (Lepidoptera, Satyridae) in Allopatric and Allochronous Micropopulations. Entmol. Rev. 101, 902–916 (2021). https://doi.org/10.1134/S001387382107006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001387382107006X

Keywords:

Navigation