Skip to main content
Log in

An experimental study of the effects of spider venom on animals

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

The effects of venom of spiders from the families Pisauridae, Argyronetidae, and Araneidae on different animals (worms, mollusks, arthropods, fishes, and mammals) were studied. The animals of different classes varied in their sensitivity to spider venom. The animals that can be a potential prey were the most sensitive. The venom of spider females was more efficient than that of males. The spiders were found to be able to kill five victims in sequence; the most effective action of venom was on the first two ones. The venom regenerates in 1.5–2.0 hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonov, I.K., Magazanik, L.G., Ovcharenko, V.I., et al., “The Spider Venom: Mechanism of Action and Taxonomic Use,” Trudy Zool. Inst. Akad. Nauk SSSR 226, 111–112 (1990).

    Google Scholar 

  2. Atkinson, R.K. and Wright, L.G., “The Modes of Action of Spider Toxins on Insects and Mammals,” Comp. Biochem. Physiol. 102, 339–342 (1992).

    Article  CAS  Google Scholar 

  3. Binford, G.J., “Differences in Venom Composition between Orb-Weaving and Wandering Hawaiian Tetragnatha (Araneae),” Biol. J. Linn. Soc. 74, 581–595 (2001a).

    Article  Google Scholar 

  4. Binford, G.J., “An Analysis of Geographic and Intersexual Chemical Variation in Venoms of the Spider Tegenaria agrestis (Agelenidae),” Toxicon 39, 955–968 (2001b).

    Article  PubMed  CAS  Google Scholar 

  5. Boeve, J., Kuhn-Nentwig, L., Keller, S., and Nentwig, W., “Quantity and Quality of Venom Released by a Spider (Cupiennius salei, Ctenidae),” Toxicon 33, 1347–1357 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. Crome, W., Die Wasserspinne (Akad. Verlagsges. Geest und Portig K.-G, Leipzig, 1951).

    Google Scholar 

  7. Eberhard, W., “Attack Behavior of Diguetid Spider and Origin of Prey Wrapping in Spiders,” Psyche 74, 173–181 (1967).

    Google Scholar 

  8. Fregel, T. and Nentwig, W., “Immobilizing and Lethal Effects of Spider Venoms on the Cockroach and the Common Mealworm,” Toxicon 27, 305–316 (1989).

    Article  Google Scholar 

  9. Gorb, S.M., “Locomotory Movements in the Semi-Aquatic Spider Dolomedes fimbriatus (Aranei, Pisauridae),” Zool. Zh. 73(11), 44–51 (1994).

    Google Scholar 

  10. Gordeev, M.I., Perevozkin, V.P., and Luk’yantsev, S.V., “Genetical and Ecological Effects of Consumption of Larval Anopheles and Culex Mosquitoes by the Water Spider Argyroneta aquatica,” Genetika 33(5), 704–709 (1997).

    Google Scholar 

  11. Hall, J.E., Hudiberg, S.W., and Odell, G.V., “Polyamines in Some Tarantula Venoms,” Toxicon 18, 681–683 (1980).

    Article  PubMed  Google Scholar 

  12. Ivanov, A.V., Spiders, Their Morphology, Biology, and Significance for Man (Leningrad Univ., 1965) [in Russian].

  13. Kudrinskaya, O.I., “Feeding and Some Biological Traits of Argyroneta aquatica,” Trudy Mosk. Inst. Rybnoi Prom. Khoz. 7, 172–203 (1955).

    Google Scholar 

  14. Kuhn-Nentwig, L., Bücheler, A., Studer, A., and Nentwig, W., “Taurine and Histamine: Low Molecular Compounds in Prey Hemolymph Increase the Killing Power of Spider Venom,” Naturwissenschaften 85, 136–138 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. Malli, H., Kuhn-Nentwig, L., Imboden, H., and Nentwig, W., “Effect of Size, Motility and Paralyzation Time of Prey on the Quantity of Venom Injected by the Hunting Spider Cupiennius salei,” J. Exp. Biol. 202, 2083–2089 (1999).

    PubMed  CAS  Google Scholar 

  16. Marikovsky, P.I., The Tarantula and the Black Widow: Morphology and Biology (Akad. Nauk Kirgiz. SSR, Frunze, 1956) [in Russian].

    Google Scholar 

  17. Nenilin, A.B., Usmanov, P.B., and Tashmukhamedov, B.A., “Toxicity Mechanism as an Additional Taxonomic Criterion for Spiders (Aranei),” Zh. Obshch. Biol. 57(1), 93–102 (1986).

    Google Scholar 

  18. Nentwig, W., “The Prey of Web-Building Spiders Compared with Feeding Experiments (Araneae: Araneidae, Linyphiidae, Pholcidae, Agelenidae),” Oecologia (Berlin) 56, 132–136 (1983).

    Article  Google Scholar 

  19. Nentwig, W. and Wissel, C., “Comparison of Prey Lengths among Spiders,” Oecologia (Berlin) 68, 595–600 (1986).

    Article  Google Scholar 

  20. Olive, C., “Foraging Specializations in Orb-Wearing Spiders,” Ecology 61(5), 1133–1144 (1980).

    Article  Google Scholar 

  21. Orlov, B.N. and Gelashvili, D.B., Zootoxicology. Poisonous Animals and Their Venoms (Vysshaya Shkola, Moscow, 1985) [in Russian].

    Google Scholar 

  22. Pavlovsky, E.N. and Lepneva, S.T., Essays of Freshwater Life (Sov. Nauka, Moscow, 1948) [in Russian].

    Google Scholar 

  23. Perevozkin, V.P., Luk’yantsev, S.V., and Gordeev, M.I., “Comparative Analysis of Trophic Behavior of Aquatic and Semi-Aquatic Spiders Argyroneta, Dolomedes, Pirata, and Pardosa,” Ekologiya, No. 2, 127–133 (2004).

  24. Pigulevskii, S.V., Poisonous Animals. Toxicology of Invertebrates (Meditsina, Leningrad, 1975) [in Russian].

    Google Scholar 

  25. Robinson, M.H., Mirick, H., and Turner, O., “The Predatory Behavior of Some Araneid Spiders and the Origin of Immobilization Wrapping,” Psyche 76, 487–501 (1969).

    Article  Google Scholar 

  26. Sadykov, A.S., Akhunov, A.A., and Salikhov, Sh.I., The Venom of the Black Widow Spider (Fan, Tashkent, 1985) [in Russian].

    Google Scholar 

  27. Schütz, D. and Taborsky, M., “Adaptations to an Aquatic Life May Be Responsible for the Reversed Sexual Size Dimorphism in the Water Spider, Argyroneta aquatica,” Evol. Ecol. 5, 105–117 (2003).

    Google Scholar 

  28. Schmidt, G., “Einige Notizen über Dolomedes fimbriatus,” Zool. Anz. 157, 83–97 (1957).

    Google Scholar 

  29. Tambourgi, D.V., “Sex-Linked Variation of Loxosceles intermedia Spider Venoms,” Toxicon 37, 217–221 (1999).

    Article  PubMed  Google Scholar 

  30. Terhivuo, J., “Havaintoja ihmista purevista hamahakeista Suomessa,” Mem. Soc. Fauna Flora Fenn. 59(4), 151–152 (1983).

    Google Scholar 

  31. Terhivuo, J., “Novelties to Finish Spider Fauna (Araneae) and Notes on Species Having Bitten Man,” Mem. Soc. Fauna Flora Fenn. 69(2), 53–56 (1993).

    Google Scholar 

  32. Wigger, E., Kuhn-Nentwig, L., and Nentwig, W., “The Venom Optimization Hypothesis: a Spider Injects Large Venom Quantities Only into Difficult Prey Types,” Toxicon 40, 749–752 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Uzenbaev.

Additional information

Original Russian Text © S.D. Uzenbaev, S.N. Lyabzina, 2009, published in Zoologicheskii Zhurnal, 2009, Vol. 88, No. 3, pp. 300–307.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uzenbaev, S.D., Lyabzina, S.N. An experimental study of the effects of spider venom on animals. Entmol. Rev. 89, 479–486 (2009). https://doi.org/10.1134/S0013873809040125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0013873809040125

Keywords

Navigation