Skip to main content

Main Components of Spider Venoms

  • Chapter
  • First Online:
Spider Ecophysiology

Abstract

Spider venoms contain a huge diversity of compounds which can be classified into six major categories: low molecular mass compounds, acylpolyamines, linear cationic peptides, cysteine-rich mini-proteins, large neurotoxic proteins and enzymes. The venoms from many mygalomorph species, containing several mini-proteins, a variety of low molecular mass compounds and enzymes, represent a very well-functioning and reliable mixture and may be seen as the basic form of spider venoms. Nevertheless, numerous modifications, changes and replacements have occurred. At least three spider groups have developed very different venom compositions: Araneidae and Nephilidae rely mainly on amino acids containing acylpolyamines, Theridiidae have developed large neurotoxic proteins and Sicariidae venoms predominantly contain phospholipase D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bettini S (1978) Arthropod venoms. Handbook of experimental pharmacology. Springer, Berlin

    Book  Google Scholar 

  • Binford G (2013) The evolution of a toxic enzyme in Sicariid spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Binford GJ, Bodner MR, Cordes MH, Baldwin KL, Rynerson MR, Burns SN, Zobel-Thropp PA (2009) Molecular evolution, functional variation, and proposed nomenclature of the gene family that includes sphingomyelinase D in sicariid spider venoms. Mol Biol Evol 26:547–566

    Article  PubMed  CAS  Google Scholar 

  • Chesnov S, Bigler L, Hesse M (2001) The acylpolyamines from the venom of the spider Agelenopsis aperta. Helv Chim Acta 84:2178–2197

    Article  CAS  Google Scholar 

  • Friedel T, Nentwig W (1989) Immobilizing and lethal effects of spider venoms on the cockroach and the common mealbeetle. Toxicon 27:305–316

    Article  PubMed  CAS  Google Scholar 

  • Grishin EV (1998) Black widow spider toxins: the present and the future. Toxicon 36:1693–1701

    Article  PubMed  CAS  Google Scholar 

  • Herzig V, King G (2013) The neurotoxic mode of action of venoms from the spider family Theraphosidae. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Itagaki Y, Nakajima T (2000) Acylpolyamines: mass spectrometric analytical methods for Araneidae spider acylpolyamines. J Toxicol Toxin Rev 19:23–52

    Article  CAS  Google Scholar 

  • Itagaki Y, Fujita T, Naoki H, Yasuhara T, Andriantsiferana M, Nakajima T (1997) Detection of new spider toxins from a Nephilengys borbonica venom gland using on-line m-column HPLC continuous flow (FRIT) FAB LC/MS and MS/MS. Nat Toxins 5:1–13

    Article  PubMed  CAS  Google Scholar 

  • Kiyatkin NI, Kulikovskaya IM, Grishin EV, Beadle DJ, King LA (1995) Functional characterization of black widow spider neurotoxins synthesised in insect cells. Eur J Biochem 230:854–859

    Article  PubMed  CAS  Google Scholar 

  • Kozlov SA, Vassilevski AA, Feofanov AV, Surovoy AY, Karpunin DV, Grishin EV (2006) Latarcins, antimicrobial and cytolytic peptides from the venom of the spider Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. J Biol Chem 281:20983–20992

    Article  PubMed  CAS  Google Scholar 

  • Kuhn-Nentwig L (2003) Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci 60:2651–2668

    Article  PubMed  CAS  Google Scholar 

  • Kuhn-Nentwig L (2009) Cytolytic and antimicrobial peptides in the venom of scorpions and spiders. In: de Lima ME (ed) Animal toxins: state of the art. Editora UFMG, Belo Horizonte

    Google Scholar 

  • Kuhn-Nentwig L, Nentwig W (2013) The cytotoxic mode of action of the venom of Cupiennius salei (Ctenidae). In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Kuhn-Nentwig L, Schaller J, Nentwig W (1994) Purification of toxic peptides and the amino acid sequence of CSTX-1 from the multicomponent venom of Cupiennius salei (Araneae: Ctenidae). Toxicon 32:287–302

    Article  PubMed  CAS  Google Scholar 

  • Kuhn-Nentwig L, Stöcklin R, Nentwig W (2011) Venom composition and strategies in spiders: is everything possible? Adv Insect Physiol 40:1–86

    Article  Google Scholar 

  • McCormick KD, Meinwald J (1993) Neurotoxic acylpolyamines from spider venoms. J Chem Ecol 19:2411–2451

    Article  CAS  Google Scholar 

  • Nentwig W, Friedel T, Manhart C (1992) Comparative investigations on the effect of the venom of 18 spider species onto the cockroach Blatta orientalis (Blattodea). Zool Jb Physiol 96:279–290

    Google Scholar 

  • Norton RS, Pallaghy PK (1998) The cystine knot structure of ion channel toxins and related polypeptides. Toxicon 36:1573–1583

    Article  PubMed  CAS  Google Scholar 

  • Odell GV, Fenton AW, Ownby CL, Doss MP, Schmidt JO (1999) The role of venom citrate. Toxicon 37:407–409

    Article  PubMed  CAS  Google Scholar 

  • Palma MS, Itagaki Y, Fujita T, Naoki H, Nakajima T (1998) Structural characterization of a new acylpolyaminetoxin from the venom of Brazilian garden spider Nephilengys cruentata. Toxicon 36:485–493

    Article  PubMed  CAS  Google Scholar 

  • Rash LD, Hodgson WC (2002) Pharmacology and biochemistry of spider venoms. Toxicon 40: 225–254

    Article  PubMed  CAS  Google Scholar 

  • Rohou A, Nield J, Ushkaryov YA (2007) Insecticidal toxins from black widow spider venom. Toxicon 49:531–549

    Article  PubMed  CAS  Google Scholar 

  • Schäfer A, Benz H, Fiedler W, Guggisberg A, Bienz S, Hesse M (1994) Polyamine toxins from spiders and wasps. In: Cordell GA, Brossi A (eds) The alkaloids, chemistry and pharmacology. Academic, San Diego

    Google Scholar 

  • Schroeder FC, Taggi AE, Gronquist M, Malik RU, Grant JB, Eisner T, Meinwald J (2008) NMR-spectroscopic screening of spider venom reveals sulfated nucleosides as major components for the brown recluse and related species. Proc Natl Acad Sci USA 105:14283–14287

    Article  PubMed  CAS  Google Scholar 

  • Suter RB, Stratton GE (2013) Predation by spitting spiders—elaborate venom gland, intricate delivery system. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Taggi AE, Meinwald J, Schroeder FC (2004) A new approach to natural products discovery exemplified by the identification of sulfated nucleosides in spider venom. J Am Chem Soc 126: 10364–10369

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Zhang Y, Hu W, Xu D, Tao H, Yang X, Li Y, Jiang L, Liang S (2010) Molecular diversification of peptide toxins from the tarantula Haplopelma hainanum (Ornithoctonus hainana) venom based on transcriptomic, peptidomic, and genomic analyses. J Proteome Res 9:2550–2564

    Article  PubMed  CAS  Google Scholar 

  • Tzouros M, Chesnov S, Bienz S, Hesse M, Bigler L (2005) New linear polyamine derivatives in spider venoms. Toxicon 46:350–354

    Article  PubMed  CAS  Google Scholar 

  • Vassilevski AA, Kozlov SA, Samsonova OV, Egorova NS, Karpunin DV, Pluzhnikov KA, Feofanov AV, Grishin EV (2008) Cyto-insectotoxins, a novel class of cytolytic and insecticidal peptides from spider venom. Biochem J 411:687–696

    Article  PubMed  CAS  Google Scholar 

  • Vassilevski AA, Kozlov SA, Grishin EV (2009) Molecular diversity of spider venom. Biochemistry (Moscow) 74:1505–1534

    Article  CAS  Google Scholar 

  • Wullschleger B, Kuhn-Nentwig L, Tromp J, Kämpfer U, Schaller J, Schürch S, Nentwig W (2004) CSTX-13, a highly synergistically acting two-chain neurotoxic enhancer in the venom of the spider Cupiennius salei (Ctenidae). Proc Natl Acad Sci USA 101:11251–11256

    Article  PubMed  CAS  Google Scholar 

  • Wullschleger B, Nentwig W, Kuhn-Nentwig L (2005) Spider venom: enhancement of venom efficacy mediated by different synergistic strategies in Cupiennius salei. J Exp Biol 208:2115–2121

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Chen J, Tang X, Wang F, Jiang L, Xiong X, Wang M, Rong M, Liu Z, Liang S (2010) Transcriptome analysis of the venom glands of the Chinese wolf spider Lycosa singoriensis. Zoology (Jena) 113:10–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Nentwig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nentwig, W., Kuhn-Nentwig, L. (2013). Main Components of Spider Venoms. In: Nentwig, W. (eds) Spider Ecophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33989-9_14

Download citation

Publish with us

Policies and ethics