Skip to main content
Log in

Effect of global warming on the timing of migration and breeding of passerine birds in the 20th century

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

Long-term monitoring of the dates of arrival, breeding, and autumn migration in 25 passerine bird species on the Kurshskaya (Courland) Spit, the Baltic Sea, has shown that spring migration and nesting in most species wintering in Europe or Africa have shifted to earlier dates in the past two decades, whereas the dates of autumn migration in most species studied have not changed significantly. In 16 bird species, a significant negative correlation of the timing of arrival and breeding with the average spring air temperature and the North Atlantic Oscillation index (NAO) in February and March was revealed. In years with early and warm springs, birds arrived at the spit and nested considerably earlier than in years with cold springs. The dates of autumn migration in most species studied largely depended on the timing of nesting but not on weather conditions in autumn. The data obtained indicate that the main factor responsible for long-term changes in the timing of arrival, nesting, and autumn migrations of passerine birds in the Baltic Region is climate fluctuations that led to considerable changes in thermal conditions in the Northern Hemisphere in the 20th century. The hypothesis is proposed that recent climate warming has caused changes in the timing of not only the arrival of birds in Europe but also of their spring migrations from Africa. Further changes in the dates of passerine bird arrival and breeding in the Palearctic in subsequent years will largely depend on the dynamics of winter and spring air temperatures in the Northern Hemisphere, whereas the timing of autumn migrations will be determined mainly by the dates of their arrival and nesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ahas, “Long-Term Phyto-, Ornitho-and Ichthyophenological Time-Series Analyses in Estonia,” Int. J. Biometeorol. 42, 119–123 (1999).

    Google Scholar 

  2. T. Alerstam, Bird Migration (Cambridge Univ. Press, 1990).

  3. A. A. Ananin, “Effect of Climatic Changes on Avian Phenmenology in the Barguzin Reserve,” in Long-Term Dynamics of Bird and Mammal Populations and Global Climate Change (Novoe Znanie, Kazan, 2002), pp. 107–112 [in Russian].

    Google Scholar 

  4. O. Askeyev, T. Sparks, and I. Askeyev, “Changes in the Arrival Times of Skylark (Alauda arvensis) in the Middle Volga Region (Kazan, Tatarstan Republic, RUSSIA),” in Long-Term Dynamics of Bird and Mammal Populations and Global Climatic Changes (Kazan, 2002), pp. 173–176.

  5. F. Bairlein and W. Winkel, “Birds and Climate Change,” in Climate of the 21st Century: Changes and Risk (Scientific Facts, GEO, Hamburg, 2001), pp. 278–282.

    Google Scholar 

  6. R. T. Barrett, “The Phenology of Spring Bird Migration to North Norway,” Bird Study 49, 270–277 (2002).

    Google Scholar 

  7. L. S. Berg, Climate and Life (OGIZ, Moscow, 1947) [in Russian].

    Google Scholar 

  8. P. Berthold, “The Control of Migration in European Warblers,” in Proceedings of the International Ornithological Congress (Univ. of Ottawa Press, Ottawa, 1988), pp. 215–249.

    Google Scholar 

  9. P. Berthold, Bird Migration: A General Survey, 2nd ed. (Oxford Univ. Press, 2001).

  10. P. Berthold, E. Gwinner, and H. Klein, “Circannuale Periodik bei Grasmucken. 1. Periodik des Korpergewichtes, der Mauser und der Nachtunruhe bei Sylvia atricapilla und S. borin unter verschiedenen konstanten Bedingungen, J. Ornithil. 113, 170–190 (1972).

    Google Scholar 

  11. J. G. Bojarinova, T. A. Rymkevich, and O. P. Smirnov, “Timing of Autumn Migration of Early and Late-Hatched Great Tits Parus major in the NW Russia,” Ardea 90, 401–409 (2002).

    Google Scholar 

  12. E. P. Borisenkov, Climate and Human Activity (Nauka, Moscow, 1982) [in Russian]

    Google Scholar 

  13. E. P. Borisenkov, Climatic Fluctuations over the Past Thousand Years (Gidrometeoizdat, Leningrad, 1988 [in Russian].

    Google Scholar 

  14. C. Both and M. E. Visser, “Adjustment to Climate Change Is Constrained by Arrival Date in a Long-Distance Migrant Bird,” Nature 411, 296–298 (2001).

    PubMed  CAS  Google Scholar 

  15. Ch. Both, A. V. Artemyev, B. Blaauw, R. J. Cowie, A. J. Dekhujizen, et al., “Large-Scale Geographical Variation Confirms That Climate Change Causes Birds to Lay Earlier,” Proc. Roy. Soc. Lond. 271, 1657–1662 (2004).

    Google Scholar 

  16. N. L. Bradley, A. C. Leopold, J. Ross, and W. Haffaker, “Phenological Changes Reflect Climate Change in Wisconsin,” Proc. Natl. Acad. Sci. USA 96, 9701–9704 (1999).

    PubMed  CAS  Google Scholar 

  17. J. L. Brown, S. H. Li, and N. Bhagabati, “Long-Term Trend toward Earlier Breeding in an American Bird: A Response to Global Warming?,” Proc. Natl. Acad. Sci. USA 96, 5565–5569 (1999).

    PubMed  CAS  Google Scholar 

  18. P. A. Cotton, “Avian Migration Phenology and Global Climate Change,” Proc. Nat. Acad. Sci. USA 100(21), 12219–12222 (2003).

    PubMed  CAS  Google Scholar 

  19. H. Q. P. Crick and T. H. Sparks, “Climate Change Related to Egg-Laying Trends,” Nature 399, 423–424 (1999).

    CAS  Google Scholar 

  20. H. Q. P. Crick, C. Dudley, D. E. Glue, and D. L. Thomson, “UK Birds Are Laying Eggs Earlier,” Nature 388, 526 (1997).

    CAS  Google Scholar 

  21. K. Curry-Lindahl, Oiseaux, les migrateurs á travers mer et terre (Delachaux et Niestle, Neuchatel, Paris, 1980).

    Google Scholar 

  22. Ch. Dixon, The Migration of Birds (St. Petersburg, 1895).

  23. V. R. Dolnik, The Migration State of Birds (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  24. V. R. Dolnik and V. A. Payevsky, “Rybachy Bird Trap,” in Ringing in the Study of Migrations of Birds of the Fauna of the USSR (Moscow, 1976), pp. 73–81.

  25. V. R. Dolnik, V. M. Gavrilov, and V. P. D’yachenko, “Bioenergetics and Regulation of the Autumn Premigration Period in the Chffinch (Fringilla soelebs L.),” Tr. Zool. Inst. Nauk Akad. Nauk SSSR 55, 62–100 (1974).

    Google Scholar 

  26. P. O. Dunn and D. W. Winkler, “Climate Change Has Affected the Breeding Date of Tree Swallows throughout North America,” Proc. R. Soc. London 266, 2487–2490 (1999).

    Google Scholar 

  27. H. Ellegren, “Timing of Autumn Migration in Bluethroats Luscinia s. svecica Depends on Timing of Breeding,” Ornis Fenn. 67, 13–17 (1990).

    Google Scholar 

  28. A. Enemar, “Incubation, Hatching, and Clutch Desertion of the Treecreeper Certhia amiliaris in South-Western Sweden,” Ornis Svecica 5, 111–124 (1995).

    Google Scholar 

  29. M. B. Eyster, “Quantitative Measurement of the Influence of Photoperiod, Temperature and Season on the Activity of Captive Songbirds,” Ecol. Monogr. 24, 1–28 (1954).

    Google Scholar 

  30. W. Fiedler, “Recent Changes in Migratory Behaviour of Birds: A Compilation of Field Observations and Ringing Data,” in Avian Migration. Physiology and Ecophysiology (Springer, Berlin, 2003), pp. 21–38.

    Google Scholar 

  31. M. C. Forchhammer, E. Post, and N. C. Stenseth, “Breeding Phenology and Climate,” Nature 391, 29–30 (1998).

    CAS  Google Scholar 

  32. M. C. Forchhammer, E. Post, and N. C. Stenseth, “North Atlantic Oscillation Timing of Long-and Short-Distance Migration,” J. Animal. Ecol. 71, 1002–1014 (2002).

    Google Scholar 

  33. W. Gatter, Vogelzug und Vogelbestande in Mitteleuropa (Aula-Verlag Wiebelsheim, Wiesbaden, 2000).

    Google Scholar 

  34. A. Gilyazov and T. Sparks, “Change in the Timing of Migration of Common Birds at the Lapland Nature Reserve (Kola Peninsula, Russia) During 1931–1999,” in Long-Term Dynamics of Bird and Mammal Populations and Global Climatic Changes (Kazan, 2002), pp. 184–188.

  35. M. Glaubrecht, Vögel im Klimastress, Bild Wiss. 11, 114–115 (1993).

    Google Scholar 

  36. D. E. Glue, “Favourable Weather Conditions Enhance the Breeding Performance of Many of Britain’s Birds in 1992,” J. Meteorol. 172, 253–255 (1992).

    Google Scholar 

  37. M. G. Golovatin and S. P. Paskhalny, “Timing of Arrival and Breeding of Birds in the North of Western Siberia: Relationship with the Weather,” Avian Ecol. Behav. 11, 47–69 (2003).

    Google Scholar 

  38. V. G. Gorshkov, V. G., Physical and Biological Foundations of Life Stability (VINITI, Moscow, 1995) [in Russian].

    Google Scholar 

  39. E. G. Gwinner, “Endogenous Timing Factors in Bird Migration,” in Animal Orientation and Navigation (NASA, Washington, DC, 1972), pp. 321–338.

    Google Scholar 

  40. E. G. Gwinner, “Circannual and Circadian Contributions to the Timing of Avian Migration,” in Avian Migration. Physiology and Ecophysiology (Springer-Verlag, Berlin, 2003), pp. 81–95.

    Google Scholar 

  41. J. T. Houghton, Y. Ding, et al., Climate Change 2001: The Scientific Basis. Contribution of Working Group to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Univ. Press, Cambridge, 2001).

    Google Scholar 

  42. Z. Hubálek, “Spring Migration of Birds in Relation to North Atlantic Oscillation,” Folia Zool. 52, 287–298 (2003).

    Google Scholar 

  43. Z. Hubálek, “Global Weather Variability Affects Avian Phenology: A Long-Term Analysis, 1881–2001,” Folia Zool. 53, 227–236 (2004).

    Google Scholar 

  44. N. Huin and T. H. Sparks, “Arrival and Progression of the Swallow Hirundo rustica through Britain,” Bird Study 45, 361–370 (1998).

    Google Scholar 

  45. J. W. Hurrell, “Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation,” Science 269 676–679 (1995).

    CAS  Google Scholar 

  46. J. W. Hurrell, Y. Kushnir, and M. Visbeck, “The North Atlantic Oscillation,” Science 291, 603–605 (2001).

    PubMed  CAS  Google Scholar 

  47. D. J. T. Hussell, “Climate Change, Spring Temperatures, and Timing of Breeding of Tree Swallows (Tachycineta bicolor) in Southern Ontario,” Auk 120, 607–618 (2003).

    Google Scholar 

  48. O. Hüppop and K. Hüppop, “North Atlantic Oscillation and Timing of Spring Migration in Birds,” Proc. R. Soc. London 270, 233–240 (2003).

    Google Scholar 

  49. D. W. Inouye, B. Barr, K. B. Armitahe, and B. D. Inouye, “Climate Change Is Affecting Altitudinal Migrants and Hibernating Species,” Proc. Nat. Acad. USA 97, 1630–1633 (2000).

    CAS  Google Scholar 

  50. F. Ivanauskas, V. Nedzinskas, and M. Zalakevicius, “The Impact of Global Warming upon Spring Arrival of Birds,” Acta Zool. Lituanica Ornithol. 6, 31–36 (1997).

    Google Scholar 

  51. I. Izhaki and A. Maitav, “Blackcaps Sylvia atricapilla Stopping over at the Desert Edge; Inter-and Intra-Sexual Differences in Spring and Autumn Migration,” Ibis 140, 234–243 (1998).

    Google Scholar 

  52. A. Järvinen, “Patterns and Causes of Long-Term Variation in Reproductive Traits of the Pied Flycatcher Ficedula hypoleuca in Finnish Lapland,” Ornis Fenn. 66, 24–31 (1989).

    Google Scholar 

  53. A. Järvinen, “Correlation between Egg Size and Clutch Size in the Pied Flycatcher Ficedula hypoleuca in Cold and Warm Summers,” Ibis 138, 620–623 (1996).

    Google Scholar 

  54. D. Jenkins and A. Watson, “Dates of First Arrival and Song of Birds during 1974–1999 in Mid-Deeside, Scotland,” Bird Study 47, 249–251 (2000).

    Google Scholar 

  55. L. Jenni and M. Kéry, “Timing of Autumn Bird Migration under Climate Change: Advances in Long-Distance Migrants, Delays in Short-Distance Migrants,” Proc. R. Soc. London 270, 1467–1471 (2003).

    Google Scholar 

  56. P. J. Jones, “Migration Strategies of Palearctic Passerines in Africa,” Israel J. Zool. 41, 393–406 (1995).

    Google Scholar 

  57. D.N. Kaigorodov, “Isochrones of the Course of the Spring Onward Movement of Cuckoo (Cuculus canorus L.), Rook (Trypanocorax frugilegus L.), and White Stock (Ciconia alba Briss) over the Territory of the European Part of Russia,” Ornitol. Vestn., No. 1, 38–40 (1911).

  58. S. C. Kendeigh, C. C. West, and G. W. Cox, “Annual Stimulus for Spring Migration in Birds,” Anim. Behav. 8, 180–185 (1960).

    Google Scholar 

  59. S. Koike and H. Higuchi, “Long-Term Trends in the Egg-Laying Date and Clutch Size of Red-Cheeked Starlings Sturnia philippensis,” Ibis 144, 150–152 (2002).

    Google Scholar 

  60. O. B. Kok, C. A. Van Ee, and D. G. Nel, “Daylength Determines Departure Date of the Spotted Flycatcher Muscicapa striata from Its Winter Quarters,” Ardea 79, 63–66 (1991).

    Google Scholar 

  61. K. Ya. Kondrat’ev, Global Climate (Nauka, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  62. D. Lack, Ecological Adaptations for Breeding in Birds (Methuen, London, 1968).

    Google Scholar 

  63. R. A. Lewis and D. S. Farner, “Temperature Modulation of Photoperiodically Induced Vernal Phenomena in White-Crowned Sparrows (Zonotrichia leucophrys),” Condor 75, 279–286 (1973).

    Google Scholar 

  64. M. B. Loveiko, “A Synoptic Beginning of the Spring and the Arrivals of Rooks in Leningrad,” Izv. Glavnoi Geofiz. Observatoriii 61(1), 44–46 (1929).

    Google Scholar 

  65. R. G. Loxon and T. H. Sparks, “Arrival of Spring Migrants at Portland, Skokholm, Bardsey, and Calf of Man,” Bardsey Observ. Rep. 42, 105–143 (1998).

    Google Scholar 

  66. A. S. Mal’chevskii and Yu. B. Pukinskii, Birds of Leningrad Oblast and Adjacent Territories (Leningr. Gos. Univ., Leningrad, 1983), Vol. 2 [in Russian].

    Google Scholar 

  67. P. P. Marra, K. A. Hobson, and R. T. Holmes, “Linking Winter and Summer Events in a Migratory Bird by Using Stable Carbon Isotopes,” Science 282, 1884–1886 (1998).

    PubMed  CAS  Google Scholar 

  68. C. F. Mason, “Long-Term Trends in the Arrival Dates of Spring Migrants,” Bird Study 42, 182–189 (1995).

    Google Scholar 

  69. E. Mayr and W. Meise, “Theoretisches zur Geschichte des Vogelzuges,” Vogelzug 21, 149–172 (1930).

    Google Scholar 

  70. R. H. McCleery and C. M. Perrins, “Temperature and Egg-Laying Trends,” Nature 391, 30–31 (1998).

    CAS  Google Scholar 

  71. T. Meijer, U. Nienaber, U. Langer, and F. Trillmich, “Temperature and Timing of Egg-Laying of European Starlings,” Condor 101, 124–132 (1999).

    Google Scholar 

  72. M. A. Menzbir, Birds (Izdanie Akts. Obshch. Brokgauz-“Efron,” St. Petersburg, 1934) [in Russian].

    Google Scholar 

  73. A. Middendorff, “Die Isepiptesen Russlands. Grundlagen zur Erforschung der Zugzeiten und Zugrichtungen der Vögel Russlands,” Mem. Acad. Sci. St.-Petersbourg. Sci. Nat. 62(8), 143 (1855).

    Google Scholar 

  74. A. A. Minin, “Spatiotemporal Variation in the Dates of the Beginning of Some Phenological Phenomena in Birds on the Eastern European Plain,” Byull. Mosk. O-va Ispyt. Prir. 97(5), 28–34 (1992).

    Google Scholar 

  75. D. Moritz, “Long-Term Monitoring of Palaearctic-African Migrants at Helgoland (German Bight, North Sea),” Ann. Sci. Zool. 268, 579–586 (1993).

    Google Scholar 

  76. Yu. G. Morozov, “ARKHIMED Database Control System for Creating and Using Ornithological Databases,” Rus. Ornitol. Zh. 4(3–4), 123–127 (1995).

    Google Scholar 

  77. Yu. G. Morozov and V. D. Efremov, “Software for the Maintenance and Use of Ornithological Databases,” in Databases and Computer Graphics in Zoological Studies (St. Petersburg, 1997), pp. 91–98 [in Russian].

  78. M. L. Morton, “Comparison of Reproductive Timing to Snow Conditions in Wild Onions and White-Crowned Sparrows at High Altitude,” Great Basin Nat. 54, 371–375 (1994).

    Google Scholar 

  79. R. Moss, J. Oswald, and D. Baines, “Climate Change and Breeding Success: Decline of the Capercaillie in Scotland,” J. Anim. Ecol. 70, 47–61 (2001).

    Google Scholar 

  80. U. Ottosson, F. Bairlein, and Ch. Hjort, “Migration Patterns of Palaearctic Acrocephalus and Sylvia Warblers in North-Eastern Nigeria,” Vogelwarte 41, 249–262 (2002).

    Google Scholar 

  81. S. P. Paskhal’nyi, “Dates of Arrival of Some Bird Species in the Lower Reaches of the Ob in 1970–2002,” in Long-Term Dynamics of Bird and Mammal Populations and Global Climate Change (Novoe Znanie, Kazan, 2002), pp. 151–156 [in Russian].

    Google Scholar 

  82. V. A. Payevsky, “Atlas of Migrations of Birds According to Data of Ringing on the Courland Spit,” in Ecological and Physiological Aspects of Bird Migrations (Leningrad, 1971), pp. 3–110 [in Russian].

  83. V. A. Payevsky, “Breeding Biology, Morphometrics, and Population Dynamics of Sylvia Warblers in the Eastern Baltic,” Avian Ecol. Behav. 2, 19–50 (1999).

    Google Scholar 

  84. V. A. Payevsky, V. G. Vysotsky, and N. P. Zelenova, “Extinction of a Barred Warbler Sylvia nisoria Population in Eastern Baltic: Long-Term Monitoring, Demography, and Biometry,” Avian Ecol. Behav. 11, 89–105 (2003).

    Google Scholar 

  85. D. J. Pearson, “Palaearctic Passerine Migrants in Kenya and Uganda: Temporal and Spatial Patterns of Their Movements,” in Bird MIgration. Physiology and Ecophysiology (Springer, Berlin, 1990), pp. 44–59.

    Google Scholar 

  86. D. J. Pearson and P. C. Lack, “Migration Patterns and Habitat Use by Passerine and Near-Passerine Migrant Birds in Eastern Africa,” Ibis 134(Suppl. 1), 8–19 (1992).

    Google Scholar 

  87. Yu. P. Perevedentsev, M. A. Vereshchagin, K. M. Shantalinskii, and E. P. Naumov, “Climate Warming in the 19th and 20th Cenuries and Its Manifestation in the Antlantic-European Region,” in Long-Term Dynamics of Bird and Mammal Populations and Global Climate Change (Novoe Znanie, Kazan, 2002), pp. 6–16.

    Google Scholar 

  88. J. Peñuelas, I. Filella, and P. Comas, “Changed Plant and Animal Life Cycles from 1952 to 2000 in the Mediterranean Region,” Global Change Biol. 8, 531–544 (2002).

    Google Scholar 

  89. C. M. Perrins, “Eggs, Egg Formation, and the Timing of Breeding,” Ibis 138, 2–15 (1996).

    Google Scholar 

  90. E. A. Polenets, V. K. Ryabitsev, N. S. Alekseeva, and Yu. A. Tyul’kin, “Interseasonal Diferences in Fecundity and Successful Reproduction of Birds in the Tundra,” Vopr. Ornitol. Barnaul, 59–60 (1995).

  91. R. Przybylo, B. C. Sheldon, and J. Merila, “Climatic Effects on Breeding and Morphology: Evidence for Phenotypic Plasticity,” Okeanologiya 69, 395–403 (2000).

    Google Scholar 

  92. J. Ptaszyk, J. Kosicki, T. H. Sparks, and P. Tryjanowski, “Changes in the Timing and Pattern of Arrival of the White Stork (Ciconia ciconia) in Western Poland,” J. Ornithol. 144, 323–329 (2003).

    Google Scholar 

  93. F. Pulido and P. Berthold, “Quantitative Genetic Analysis of Migratory Behaviour,” in Advian Migration. Physiology and Ecophysiology (Springer, Berlin, 2003), pp. 53–77.

    Google Scholar 

  94. T. L. Root, “Changes over 30 Years in Spring Arrival Dates of Migrating Birds: Is Spring Arrival 3 Weeks Earlier?,” in Workshop on the Impacts of Climate Change on Flora and Fauna, 1997 (National Center for Atmospheric Research (NCAR), Boulder, Colorado, 1997), pp. 19–22.

    Google Scholar 

  95. V. K. Ryabitsev, Territorial Relations and Dynamics of Bird Communities in the Subarctic Region (Nauka, Ural Otd., Yekaterinburg, 1993) [in Russian].

    Google Scholar 

  96. V. N. Ryzhanovskii, Ecology of the Postnesting Period in the Life of Passerine Birds in the Subarctic Region (Ural. Univ., Yekaterinburg, 1997) [in Russian].

    Google Scholar 

  97. T. A. Rymkevich and J. G. Bojarinova, “Variation in the Extent of Post-Juvenile Moult in the Great Titnear Lake Ladoga (Russia),” Bird Study 43, 47–59 (1996).

    Google Scholar 

  98. S. Rytkönen, K. Koivula, and E. Lindgren, “The Population Size and Breeding Biology of the Rook Corvus frugilegus in Northern Finland,” Ornis Fenn. 70, 202–212 (1993).

    Google Scholar 

  99. J. J. Sanz, “Climate Change and Birds: Have Their Ecological Consequences Already Been Detected in the Mediterranean Region?,” Ardeola 49, 109–120 (2002).

    Google Scholar 

  100. H. Schwabl and B. Silverin, “Control of Partial Migration and Autumn Behavior,” in Bird Migration. Physiology and Ecophysiology (Springer, Berlin, 1990), pp. 144–155.

    Google Scholar 

  101. A. M. Sema, Phenology of Bird Migrations in Kazakhstan (Nauka, Alma-Ata, 1989) [in Russian].

    Google Scholar 

  102. S. Shnaider, “Science of Climate Simulation and Discussion of Prospects of Global Warming,” in Global Warming (Mosk. Gos. Univ., Moscow, 1993), pp. 42–66.

    Google Scholar 

  103. M. E. Shumakov, N. V. Vinogradova, and V. A. Payevsky, “MOlt and Formation of Migration State in Chaffinches (Fringilla soelebs) from Early and Late Broods Reared in Captivity,” Zool. Zh. 512, 113–118 (1972).

    Google Scholar 

  104. B. Silverin, “Reproductive Adaptations to Breeding in the North,” Am. Zool. 35, 191–202 (1995).

    CAS  Google Scholar 

  105. B. Silverin and P. A. Viebke, “Low Temperatures Affect Photoperiodically Induced LH and Testicular Cycles Differently in Closely Related Species of Tit (Parus major), Horm. Behav. 28, 199–206 (1994).

    PubMed  CAS  Google Scholar 

  106. A. Sinelschikova and L. V. Sokolov, “Long-Term Monitoring of the Timing of MIgration in Thrushes (Turdus philomelos, T. iliacus) in the Eastern Baltic,” Avian Ecol. Behav. 12, 11–30 (2004).

    Google Scholar 

  107. F. M. Slater, “First-Egg Date Fluctuations for the Pied Flycatcher Ficedula hypoleuca in the Woodland of Mid-Wales in the Twentieth Century,” Ibis 141, 489–506 (1999).

    Google Scholar 

  108. L. V. Sokolov, “Phylopatry and Dispersal of Birds,” Tr. Zool. Inst. Akad. Nauk SSSR, 1–233 (1991).

  109. L. V. Sokolov, “Population Dynamics of Passerine Birds,” Zool. Zh. 78(3), 311–324 (1999).

    Google Scholar 

  110. L. V. Sokolov, “Spring Ambient Temperature As an Important Factor Controlling Timing of Arrival, Breeding, Post-Fledging Dispersal and Breeding Success of Pied Flycatchers Ficedula hypoleuca,” Avian Ecol. Behav. 5, 79–104 (2000).

    Google Scholar 

  111. L. V. Sokolov, “Climatic Influence on Year-to-Year Variation in Timing of Migration and Breeding Phenology in Passerines on the Courish Spit,” Ring 23(1), 159–166 (2001).

    Google Scholar 

  112. L. V. Sokolov and V. V. Kosarev, “Relationship between Timing of Arrival of Passerines to the Courish Spit and North Atlantic Oscillation Index (NAOI) and Precipitation in Africa,” Proc. Zool. Inst. Russ. Acad. Sci. 299, 141–154 (2003).

    Google Scholar 

  113. L. V. Sokolov and V. A. Payevsky, “Spring Temperatures Influence Year-to-Year Variations in the Breeding Phenology of Passerines on the Courish Spit, Eastern Baltic,” Avian Ecol. Behav. 1, 22–36 (1998).

    Google Scholar 

  114. L. V. Sokolov, M. Yu. Markovets, and Yu. G. Morozov, “Long-Term Dynamics of the Mean Date of Autumn Migration in Passerines on the Courish Spit of the Baltic Sea,” Avian Ecol. Behav. 2, 1–18 (1999a).

    Google Scholar 

  115. L. V. Sokolov, M. Yu. Markovets, A. P. Shapoval, and Yu. G. Morozov, “Long-Term Monitoring of the Dates of Spring Migration in Passerine Birds on the Courish Spit of the Baltic Sea: 1. Dynamics of the Dates of Migration,” Zool. Zh. 78(6), 709–717 (1999b).

    Google Scholar 

  116. L. V. Sokolov, M. Yu. Markovets, A. P. Shapoval, and Yu. G. Morozov, “Long-Term Monitoring of the Dates of Spring Migration in Passerine Birds on the Courish Spit of the Baltic Sea: 2. Effect of the Temperature Factor on the Dates of Migration,” Zool. Zh. 78(9), 1102–1109 (1999c).

    Google Scholar 

  117. L. V. Sokolov, E. A. Tropp, Yu. G. Morozov, and V. D. Efremov, “Effect of the Temperature Factor on Long-Term Fluctuations in the Timing of Migration, Breeding, and Dispersal of Passerine Birds,” Dokl. Akad. Nauk, Obshch. Biol. 379(2), 282–285 (2001) [Dokl. Biol. 379, 362–365 (2001)].

    CAS  Google Scholar 

  118. L. V. Sokolov, E. A. Tropp, Yu. G. Morozov, and V. D. Efremov, “The Effect of Climate on Long-Term Fluctuations in the Numbers of Passerine Birds,” Dokl. Akad. Nauk, Obshch. Biol. 384(3), 426–429 (2002) [Dokl Biol. 384, 246–249 (2002)].

    Google Scholar 

  119. L. V. Sokolov, V. V. Kosarev, N. V. Fedoseeva, M. Yu. Markovets, A. P. Shapoval, and V. D. Yefremov, “Relationship between Autumn Numbers of the Coal Tit Parus ater, Air Temperatures and North Atlantic Oscillation Index,” Avian Ecol. Behav. 11, 71–88 (2003).

    Google Scholar 

  120. L. V. Sokolov, A. P. Shapoval, V. D. Yefremov, V. V. Kosarev, and M. Yu. Markovets, “Timing and Dynamics of Autumn Passage of the Long-Tailed Tits Aegithalos caudatus on the Courish Spit (Eastern Baltic),” Avian Ecol. Behav. 12, 31–52 (2004).

    Google Scholar 

  121. T. H. Sparks, “Phenology and the Changing Pattern of Bird Migration in Britain,” Int. J. Biometeorol. 42, 134–138 (1999).

    Google Scholar 

  122. T. H. Sparks and O. Braslavska, “The Effects of Temperature, Altitude and Latitude on the Arrival and Departure Dates of the Swallow Hirundo rustica in the Slovak Republic,” Int. J. Biometeorol. 45, 212–216 (2001).

    PubMed  CAS  Google Scholar 

  123. T. Sparks and R. Gill, “Climate Change and the Seasonality of Woodland Flora and Fauna,” Climate Change: Impacts UK Forest 125, 69–82 (2002).

    Google Scholar 

  124. T. H. Sparks and C. F. Mason, “Dates of Arrivals and Departures of Spring Migrants Taken from Essex Bird Reports 1950–1998,” Essex Bird Rep., 154–164 (2001).

  125. T. H. Sparks, D. R. Roberts, and H. Q. P. Crick, “What Is the Value of First Arrival Dates of Spring Migrants in Phenology?,” Avian Ecol. Behav. 7, 75–85 (2001).

    Google Scholar 

  126. T. H. Sparks, H. Q. P. Crick, P. Dunn, and L. V. Sokolov, “Phenology of Selected Lifeforms: Birds,” in Phenology: An Integrative Environmental Science (Kluwer Acad. Publishers, Netherlands, 2003), pp. 421–436.

    Google Scholar 

  127. J. Steinbacher, Vogelzug und Vogelzugforschung (Frankfurt am Main, 1951).

  128. N. Ch. Stenseth and A. Mysterud, “Climate, Changing Phenology, and Other Life History Traits: Nonlinearity and Match-Mismatch to the Environment,” Proc. Nat. Acad. Sci. USA 99(21), 13379–13381 (2003).

    Google Scholar 

  129. F. Sueur and P. Triplet, “Réchauffement climatique: Les passereaux arrivent-ils plus tôt au Printemps?,” Avifaune picardie 1, 111–120 (2001).

    Google Scholar 

  130. D. O. Svyatskii, “Fluctuations of Climate in Leningrad,” Mirovedenie, No. 4, 293–306 (1926).

  131. S. A. Temple and J. R. Cary, “Climatic Effects on Year-to-Year Variations in Migration Phenology: A WSO Research Project,” Passenger Pigion 49(2), 70–75 (1987).

    Google Scholar 

  132. G. Thingstand, “Annual and Local Reproductive Variations of a Pied Flycather Ficedula hypoleuca Population Near a Subalpine Lake in Central Norway,” Ornis Fenn. 74, 39–49 (1997).

    Google Scholar 

  133. A. L. Thomson, Problems of Bird Migration (London, 1926).

  134. L. T. Threadgold, “A Study of the Annual Cycle of the House Sparrow at Various Latitudes,” Condor 62, 190–201 (1960).

    Google Scholar 

  135. P. Tryjanowski, S. Kuzniak, and T. Sparks, “Earlier Arrival of Some Farmland Migrants in Western Poland,” Ibis 144, 62–68 (2002).

    Google Scholar 

  136. M. H. Visbeck, J. W. Hurrell, L. Polvani, and H. M. Cullen, “The North Atlantic Oscillation: Past, Present, and Future,” Proc. Nat. Acad. Sci. USA 98, 12876–12877 (2001).

    PubMed  CAS  Google Scholar 

  137. M. E. Visser, A. J. van Noordwijk, J. M. Tinbergen, and C. M. Lessells, “Warmer Springs Lead to Mistimed Reproduction in Great Tits (Parus major),” Proc. R. Soc. London 265, 1867–1870 (1998).

    Google Scholar 

  138. D. Vogel and D. Moritz, “Langjährige Änderungen von Zugzeiten auf Helgoland,” Jb. Inst. Vogelforschung 2, 8–9 (1995).

    Google Scholar 

  139. G.-R. Walther, E. Post, P. Convey, A. Mezel, C. Parmesan, et al., “Ecological Responses to Recent Climate Change,” Nature 416, 389–395 (2002).

    PubMed  CAS  Google Scholar 

  140. W. Winkel and H. Hudde, “Long-Term Trends in Reproductive Traits of Tits (Parus major, P. caeruleus) and Pied Flycatchers Ficedula hypoleuca,” J. Avian Biol. 28, 187–190 (1997).

    Google Scholar 

  141. D. W. Winkler, P. O. Dunn, and Ch. E. McCulloch, “Predicting the Effects of Climate Change on Avian Life-History Traits,” Proc. Nat. Acad. Sci. U.S.A. 99, 13595–13599 (2002).

    CAS  Google Scholar 

  142. R. Yosef and P. Tryjanowski, “Differential Spring Migration of Ortolan Bunting Emberiza hortulana by Sex and Age at Eilat, Israel,” Ornis Fenn. 79, 173–180 (2002).

    Google Scholar 

  143. T. Zając, “Selection on Laying Date in Blue Tit Parus caeruleus and the Great Tit Parus major Caused by Weather Conditions,” Acta Ornithol. 30, 145–151 (1995).

    Google Scholar 

  144. M. Zalakevicius and R. Zalakeviciute, “Global Climate Change Impact on Birds: A Review of Research in Lithuania,” Folia Zool. 50, 1–17 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.V. Sokolov, 2006, published in Zoologicheskii Zhurnal, 2006, Vol. 85, no. 3, pp. 317–341.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, L.V. Effect of global warming on the timing of migration and breeding of passerine birds in the 20th century. Entmol. Rev. 86 (Suppl 1), S59–S81 (2006). https://doi.org/10.1134/S0013873806100058

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0013873806100058

Keywords

Navigation