Skip to main content
Log in

Synthesis of Novel Composite Sorbents Based on Titanium, Calcium, and Magnesium Phosphates

  • CHEMISTRY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

Heterogeneous and mechanochemical syntheses of new materials based on titanium, calcium, and magnesium phosphates were developed for the first time. The products demonstrated high efficiency as sorbents for the removal of heavy metal cations and radionuclides from solutions. The joint action of the sorption components ensures high sorption capacity towards various cations over a wide pH range. The optimal conditions providing products with a specified phase composition were identified. The use of a solution of a phosphorus-containing agent and solid precursors taken in a stoichiometric ratio, together with mild hydrothermal conditions make it possible to minimize the amount of liquid waste. In the first step of the synthesis, precipitation of titanium phosphate and formation of the precursor needed for the second step (formation of calcium and magnesium phosphates) take place simultaneously. Thus, the synthesis protocol complies with the green chemistry principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Robinson, J.L., Brudnicki, P., Lu, H.H., Comprehensive Biomaterials II, Healy, K., Ducheyne, P., Hutmacher, D.W., Grainger, D.W., and Kirkpatrick, J., eds., Elsevier, 2017, vol. 1, pp. 460–477. https://doi.org/10.1016/B978-0-12-803581-8.09345-0

    Book  Google Scholar 

  2. Yang, J., Li, Q., Li, J., Yang, J., Zhang, R., Niinomi, M., and Nakano, T., J. Mater. Eng. Perform., 2023, vol. 32, pp. 6151–6159. https://doi.org/10.1007/s11665-022-07541-6

    Article  CAS  Google Scholar 

  3. Kumar, K., Das, A., and Prasad, S.B., Proc. Inst. Mech. Eng. Part H: J. Eng. Med., 2023, vol. 237, no. 4, pp.502–516. https://doi.org/10.1177/09544119231158837

    Article  Google Scholar 

  4. Barinov, S.M., Russ. Chem. Rev., 2010, vol. 79, no. 1, pp. 13–29. https://doi.org/10.1070/RC2010v079n01ABEH004098

    Article  CAS  Google Scholar 

  5. Li, P., Hu, Y., Lu, D., Wu, J., and Lv, Y., Micromachines, 2023, vol. 14, no. 3, p. 639. https://doi.org/10.3390/mi14030639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yadav, A.A., Hunge, Y.M., Dhodamani, A.G., and Kang, S.-W., Catalysts, 2023, vol. 13,no. 4, p. 716. https://doi.org/10.3390/catal13040716

    Article  CAS  Google Scholar 

  7. Barpanda, P., Chotard, J.-N., Delacourt, Ch., Reynard, M., Filinchuk, Ya., Armand, M., Deschamps, M., and Tarascon, J.-M., Angew. Chemie Int. Ed., 2011, vol. 50, no. 11, pp. 2526–2531. https://doi.org/10.1002/anie.201006331

    Article  CAS  Google Scholar 

  8. Kadoshnikov, V.M., Melnychenko, T.I., Arkhipenko, O.M., Tutskyi, D.H., Komarov, V.O., Bulavin, L.A., and Zabulonov, Y.L., C-J. Carbon Res., 2023, vol. 9, no. 2, p. 39. https://doi.org/10.3390/c9020039

    Article  CAS  Google Scholar 

  9. Ryfa, A., Żmuda, R., Mandrela, S., Białecki, R., Adamczyk, W., Nowak, M., Lelek, Ł., Bandoła, D., Pichura, M., Płonka, J., and Wdowin, M., Fuel, 2023, vol.,333, p. 126470. https://doi.org/10.1016/j.fuel.2022.126470

  10. Tokarčíková, M., Seidlerová, J., Motyka, O., and Šafaříková, M., Ecol. Chem. Eng. S, 2019, vol. 26, no. 4, pp. 743–757. https://doi.org/10.1515/eces-2019-0052

    Article  CAS  Google Scholar 

  11. Alhendal, A., Almoaeen, R. A., Rashad, M., Husain, A., Mouffouk, F., and Ahmad, Z., RSC Adv., 2022, vol. 12, no. 28, pp. 18077–18083. https://doi.org/10.1039/D2RA02659G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma, M., Wang, L., Lu, X., Wang, Sh., Guo, Y., and Liang, X., J. Chromatogr. A., 2023, vol. 1691, p. 463814. https://doi.org/10.1016/j.chroma.2023.463814

  13. Maslova, M., Mudruk, N., Ivanets, A., Shashkova, I., and Kitikova, N., Environ. Sci. Pollut. Res., 2020, vol. 27, no. 4, pp. 3933–3949. https://doi.org/10.1007/s11356-019-06949-3

    Article  CAS  Google Scholar 

  14. McMaster, S.A., Ram, R., Faris, N., and Pownceby, M.I., J. Hazard. Mater., 2018, vol. 360, pp. 257–269. https://doi.org/10.1016/j.jhazmat.2018.08.037

    Article  CAS  PubMed  Google Scholar 

  15. Vinokurov, S.E., Kulikova, S.A., and Myasoedov, B.F., Materials, 2018, vol. 11, no. 6, p. 976. https://doi.org/10.3390/ma11060976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maslova, M.V., Rusanova-Naydenova, D., Naydenov, V., Antzutkin, O.N., and Gerasimova, L.G., J. Non. Cryst. Solids, 2012, vol. 358, pp. 2943–2950. https://doi.org/10.1016/j.jnoncrysol.2012.06.033

    Article  CAS  Google Scholar 

  17. Mahaulpatha, W.M.B.H., Jayaweera, P.M., and Palliyaguru, L., Proc. Int. For. Environ. Symp., 2022, vol. 26, p. 139. https://doi.org/10.31357/fesympo.v26.5757

    Article  Google Scholar 

  18. Bortun, A., Jaimez, E., Llavona, R., Garcia, J.R., and Rodriguez, J., Mater. Res. Bull., 1995, vol. 30, no. 4, pp. 413–420. https://doi.org/10.1016/0025-5408(95)00019-4

    Article  CAS  Google Scholar 

  19. Barbé, C.J., Mitchell, D.R.G., Drabarek, E., Bartlett, J.R., Woolfrey, J.L., and Luca, V., MRS Proc., 2000, vol. 628, p. 73. https://doi.org/10.1557/PROC-628-CC7.3

  20. Trublet, M., Maslova, M.V., Rusanova, D., and Antzutkin, O.N., RSC Adv., 2017, vol. 7, no. 4, pp. 1989–2001. https://doi.org/10.1039/C6RA25410A

    Article  CAS  Google Scholar 

  21. Maslova, M.V., Ivanenko, V.I., Yanicheva, N.Y., and Mudruk, N.V., Int. J. Mol. Sci., 2020, vol. 21, no. 2, pp. 447. https://doi.org/10.3390/ijms21020447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maslova, M.V., Ivanenko, V.I., Gerasimova, L.G., and Ryzhuk, N.L., Russ. J. Inorg. Chem., 2018, vol. 63, no. 9, pp. 1141–1148. https://doi.org/10.1134/S0036023618090115

    Article  CAS  Google Scholar 

  23. Maslova, M., Ivanenko, V., Yanicheva, N., and Gerasimova, L., J. Water Process Eng., 2020, vol. 35, p. 101233. https://doi.org/10.1016/j.jwpe.2020.101233

  24. Maslova, M.V., Ivanenko, V.I., Gerasimova, L.G., and Nikolaev, A.I., Dokl. Chem., 2021, vol. 499, no. 2, pp. 163–167. https://doi.org/10.1134/S0012500821080024

    Article  CAS  Google Scholar 

  25. Ivanets, A.I., Kitikova, N.V., Shashkova, I.L., Oleksiienko, O.V., Levchuk, I., and Sillanpää, M., J. Water Process Eng., 2016, vol. 9, pp. 246–253. https://doi.org/10.1016/j.jwpe.2016.01.005

    Article  Google Scholar 

  26. Chen, Y.N., Liu, C., Guo, L., Nie, J.X., and Li, C., Clean Technol. Environ. Policy, 2018, vol. 20, no. 10, pp. 2375–2380. https://doi.org/10.1007/s10098-018-1607-2

    Article  CAS  Google Scholar 

  27. Ayers, R., Hannigan, N., Vollmer, N., and Unuvar, C., Int. J. Self-Propag. High-Temp. Synth., 2011, vol. 20, pp. 6–14. https://doi.org/10.3103/S1061386211010031

    Article  CAS  Google Scholar 

  28. Gerasimova, L.G., Maslova, M.V., and Shchukina, E.S., Theor. Found. Chem. Eng., 2009, vol. 43, no. 4, pp. 464–467. https://doi.org/10.1134/s0040579509040186

    Article  CAS  Google Scholar 

  29. Maslova, M., Ivanenko, V., Gerasimova, L., Lars-son, A.-C., and Antzutkin, O.N., J. Mater. Sci., 2021, vol. 56, no. 16, pp. 9929–9950. https://doi.org/10.1007/s10853-021-05876-4

    Article  CAS  Google Scholar 

  30. Maslova, M.V., Mudruk, N.V., Gerasimova, L.G., and Ivanets, A.I., Patent RF 2711635, 2020.

  31. Mudruk, N., and Maslova, M., Int. J. Mol. Sci., 2023, vol. 24, no. 9, p. 7903. https://doi.org/10.3390/ijms24097903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maslova, M.V., Mudruk, N.V., Gerasimova, L.G., and Kuzmich, Yu.V., Patent RF 2743359, 2021.

  33. Maslova, M., Mudruk, N., Ivanets, A., Shashkova, I., and Kitikova, N., J. Water Process Eng., 2020, vol. 40, p. 101830. https://doi.org/10.1016/j.jwpe.2020.101830

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 23-23-00187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Mudruk.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by Z. Svitanko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudruk, N.V., Maslova, M.V. & Nikolaev, A.I. Synthesis of Novel Composite Sorbents Based on Titanium, Calcium, and Magnesium Phosphates. Dokl Chem 514, 42–49 (2024). https://doi.org/10.1134/S0012500824600020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500824600020

Keywords:

Navigation