Skip to main content
Log in

Phase Formation in Alkaline Titanosilicate Systems during Hydrothermal Synthesis

  • CHEMISTRY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

The highly alkaline multicomponent systems TiO2–H2SO4–Na2SiO3–NaOH–H2O and TiO2–H2SO4–(NH4)2SO4–Na2SiO3–NaOH–H2O have been studied under conditions of hydrothermal synthesis, which gives new products with specified technical properties. It has been shown that, by a targeted selection of structure-forming components, in particular, titanium compounds, together with optimal parameters of hydrothermal treatment of the formed precursor, one can obtain compounds with given chemical composition and particle size and morphology. It has been found that the rate of structural transformations in the synthesis depends on the phase composition of titanosilicate precursors. Their hydrothermal treatment involves the alkaline and thermal hydrolysis followed by dehydration of the hydrolyzed phases of titanium(IV) and silicon. This is accompanied by the localization of free bonds ensuring the formation of Ti–O–Si–O bridges and their subsequent transformation into new structured species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Yakovenchuk, V.N., Krivovichev, S.V., Pakhomovsky, Y.A., Selivanova, E.A., and Ivanyuk, G.Y., in Minerals as Advanced Materials II, Krivovichev, S.V., Ed., Berlin, Heidelberg: Springer, 2012. pp. 229-238. https://doi.org/10.1007/978-3-642-20018-2_23

    Book  Google Scholar 

  2. Folli, A., Pochard, I., Nonat, A., Jakobsen, U.H., Shepherd, A.M., and Macphee, D.E., J. Am. Ceram. Soc., 2010, vol. 93, no. 10, pp. 3360–3369. https://doi.org/10.1111/j.1551-2916.2010.03838.x

    Article  CAS  Google Scholar 

  3. Young, D.A., US Patent 3329481A, 1967.

  4. Taramasso, M., Perego, G., and Notari, B., US Patent 4410501A, 1983.

  5. Kuznicki, S.M., US Patent 5011591A, 1991.

  6. Ferraris, G., Khomyakov, A.P., Belluso, E., and Soboleva, S., in Mineralogy Proc. 30th Int. Geol. Cong., vol. 16, Huang Yunhui and Cao Yawen, Eds., London: CRC Press. 1998, pp. 17–27. https://doi.org/10.1201/9781003079569

  7. Liu, L., Tan, W., Xiao, P., and Zhai, Y., Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 675–678. https://doi.org/10.1007/s12613-012-0612-4

    Article  CAS  Google Scholar 

  8. Xu, H., Zhang, Y., and Navrotsky, A., Micropor. Mesopor. Mater., 2001, vol. 47, pp. 285–291. https://doi.org/10.1016/S1387-1811(01)00388-2

    Article  CAS  Google Scholar 

  9. Mann, N.R. and Todd, T.A., Sep. Sci. Technol., 2005, vol. 39, no. 10, pp. 2351–2371. https://doi.org/10.1081/SS-120039321

    Article  CAS  Google Scholar 

  10. Spiridonova, D.V., Krivovichev, S.V., Yakovenchuk, V.N., and Pakhomovskii, Ya.A., Ross. Khim. Zh., 2010, no. 5, pp. 79–88.

  11. Gerasimova, L.G., Nikolaev, A.I., Shchukina, E.S., and Maslova, M.V., Dokl. Chem., 2020, vol. 491, no. 1, pp. 49–53. https://doi.org/10.1134/S0012500820030039

  12. Shchukina, E.S., Gerasimova, L.G., and Maslova, M.V., Fundam. Issled., 2018, no. 11-1, pp. 18–23. https://doi.org/10.17513/fr.42294

  13. Wei, M., Zhang, L., Xiong, Y., Li, J., and Peng, P., Microporous Mesoporous Mater., 2016, vol. 227, pp. 88–94. https://doi.org/10.1016/j.micromeso.2016.02.050

    Article  CAS  Google Scholar 

  14. De Boer, J.H., Lippens, B.C., Linsen, B.G., Broekhoff, J.C.P., Heuvel, A., and Osinga, Th.J., J. Colloid Interface Sci., 1966, vol. 21, no. 4, pp. 405–414. https://doi.org/10.1016/0095-8522(66)90006-7

    Article  ADS  CAS  Google Scholar 

  15. Neimark, A.V., Ravikovitch, P.I., and Vishnyakov, A., J. Phys. Condens. Matter, 2003, vol. 15, no. 3, pp. 347–367. https://doi.org/10.1088/0953-8984/15/3/303

    Article  ADS  CAS  Google Scholar 

  16. Samburov, G.O., Kalashnikova, G.O., Panikorovskii, T.L., Bocharov, V.N., Kasikov, A., Selivanova, E., Bazai, A.V., Bernadskaya, D., Yakovenchuk, V.N., and Krivovichev, S.V., Crystals, 2022, vol. 12, no. 3, p. 311. https://doi.org/10.3390/cryst12030311

    Article  CAS  Google Scholar 

  17. Perovskiy, I., Yanicheva, N.Yu., Stalyugin, V.V., Panikorovskii, T.L., and Golov, A.A., Microporous Mesoporous Mater., 2021, vol. 311, p. 110716. https://doi.org/10.1016/j.micromeso.2020.110716

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation under scientific topic no. 122022400094-1 (registration FMEZ-2022-0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Gerasimova.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by V. Glyanchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimova, L.G., Shchukina, E.S., Maslova, M.V. et al. Phase Formation in Alkaline Titanosilicate Systems during Hydrothermal Synthesis. Dokl Chem 513, 397–403 (2023). https://doi.org/10.1134/S0012500823700192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500823700192

Keywords:

Navigation