Skip to main content
Log in

Synthesis, Characterization, and Biological Evaluation of New Cyclic Quinazoline Derivatives as Potential Antibacterial and Antifungal Agents

  • CHEMISTRY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

Heterocyclic compounds are crucial for medicinal chemistry and the development of therapeutic agents like broad-spectrum antibiotics. This study devised a facile procedure to synthesize novel antimicrobial bicyclic heterocycles from 2-mercapto-3-phenylquinazolin-4(3H)-one. Advanced analytical techniques including 1H and 13C NMR, elemental analysis, and FT-IR spectroscopy characterized the intricate chemical structures of the products. In vitro assays tested the heterocycles against aerobic and anaerobic bacterial strains using fluconazole and ciprofloxacin as antifungal and antibacterial controls. Results demonstrated the formidable broad-spectrum antibacterial and antifungal activities of the synthesized compounds, with growth inhibition approaching that of the positive controls. These findings highlight the immense potential of these novel heterocyclic compounds as antimicrobial agents. Further research can optimize their drug-like properties for eventual clinical use in combating drug-resistant infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Hartnett, K.P., Jackson, K.A., Felsen, C., McDonald, R., Bardossy, A.C., Gokhale, R.H., Kracalik, I., Lucas, T., McGovern, O., Van Beneden, C.A., Mendoza, M., Bohm, M., Brooks, J.T., Asher, A.K., Magill, S.S., Fiore, A., Blog, D., Dufort, E.M., See I., and Dumyati, G. Morb. Mortal. Wkly. Rep., 2019, vol. 68, pp. 583. https://doi.org/10.15585/mmwr.mm6826a2

    Article  Google Scholar 

  2. Woltmann, E., Grogan-Kaylor, A., Perron, B., Georges, H., Kilbourne, A.M., and Bauer, M.S., Am. J. Psychiatry, 2012, vol. 169, pp. 790–804. https://doi.org/10.1176/appi.ajp.2012.11111616

    Article  PubMed  Google Scholar 

  3. Pore, A., Gaikwad, G., Hegade, S., Jadhav, Y., Mane, R., and Kumbhar, R., Anal. Chem. Lett., 2023, vol. 13, pp. 39–59. https://doi.org/10.1080/22297928.2023.2173647

    Article  CAS  Google Scholar 

  4. Han, Y.-Y., Jiang, H., Wang, R., and Yu, S., J. Org. Chem., 2016, vol. 81, pp. 7276–7281. https://doi.org/10.1021/acs.joc.6b00869

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, X.-B., Cheng, G., Zhang, W.-J., Shen, G.-L., and Yu, R.-Q., Talanta, 2007, vol. 71, pp. 171–177. https://doi.org/10.1016/j.talanta.2006.03.036

    Article  CAS  PubMed  Google Scholar 

  6. Saha, S. K., Murmu, M., Murmu, N. C., and Banerjee, P., J. Mol. Liq., 2016, vol. 224, pp. 629–638. https://doi.org/10.1016/j.molliq.2016.09.110

    Article  CAS  Google Scholar 

  7. Kalaria, P.N., Karad, S.C., and Raval, D.K., Eur. J. Med. Chem., 2018, vol. 158, pp 917–936. https://doi.org/10.1016/j.ejmech.2018.08.040

    Article  CAS  PubMed  Google Scholar 

  8. Martins, P., Jesus, J., Santos, S., Raposo, L.R., Roma-Rodrigues, C., Baptista, P.V., and Fernandes, A.R., Molecules, 2015, vol. 20, pp. 16852–16891. https://doi.org/10.3390/molecules200916852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gomha, S.M., Muhammad, Z.A., Gaber, H.M., and Amin, M.M., J. Heterocycl. Chem., 2017, vol. 54, pp. 2708–2716. https://doi.org/10.1002/jhet.2872

    Article  CAS  Google Scholar 

  10. Da Costa, L., Scheers, E., Coluccia, A., Rosetti, A., Roche, M., Neyts, J., Terme, T., Cirilli, R., Mirabelli, C., and Silvestri, R., Eur. J. Med. Chem., 2017, vol. 140, pp. 528–541. https://doi.org/10.1016/j.ejmech.2017.09.036

    Article  CAS  PubMed  Google Scholar 

  11. Mathur, G. and Nain, S., Med. Chem., 2014, vol. 4, pp. 417–427. https://doi.org/10.4172/2161-0444.1000173

    Article  Google Scholar 

  12. Abdel-Aziem, A., J. Heterocycl. Chem., 2017, vol. 54, pp. 2985–2995. https://doi.org/10.1002/jhet.2906

    Article  CAS  Google Scholar 

  13. Zhang, D.-J., Sun, W.-F., Zhong, Z.-J., Gao, R.-M., Yi, H., Li, Y.-H., Peng, Z.‑G., and Li, Z.-R., Molecules, 2014, vol.19, pp. 925–939. https://doi.org/10.3390/molecules19010925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Azab, M. E., Youssef, M. M., and El-Bordany, E. A., Molecules, 2013, vol. 18, pp. 832–844. https://doi.org/10.3390/molecules18010832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chand, M., Gupta, A., and Jain, S. C., Heterocycl. Lett., 2017, vol. 7, pp. 201–214.

    CAS  Google Scholar 

  16. Jeber, J.N., Hassan, R.F., Hammood, M.K., and Al-Jeilawi, O.H.R., Sens. Actuators B: Chem., 2021, vol. 341, p. 130009. https://doi.org/10.1016/j.snb.2021.130009

  17. Turkey, N.S. and Jeber, J.N., Chem. Chem. Technol., 2022, vol. 16, pp. 600–613. https://doi.org/10.23939/chcht16.04.600

    Article  CAS  Google Scholar 

  18. Dongare, P.R., Gore, A.H., Kondekar, U.R., Kolekar, G.B., and Ajalkar, B.D., Inorg. Nano-Met. Chem., 2018, vol. 48, pp. 49–56. https://doi.org/10.1080/24701556.2017.1357631

    Article  CAS  Google Scholar 

  19. Khan, I., Zaib, S., Batool, S., Abbas, N., Ashraf, Z., Iqbal, J., and Saeed, A., Bioorg. Med. Chem., 2016, vol. 24, pp. 2361–2381. https://doi.org/10.1016/j.bmc.2016.03.031

    Article  CAS  PubMed  Google Scholar 

  20. Xing, Z., Wu, W., Miao, Y., Tang, Y., Zhou, Y., Zheng, L., Fu, Y., Song, Z., and Peng, Y., Org. Chem. Front., 2021, vol. 8, pp. 1867–1889. https://doi.org/10.1039/D0QO01425G

    Article  CAS  Google Scholar 

  21. Al-Jeilawi, O.H.R., Al-Ani, H.N., Al-Zahra, A., and Al-Sultani, K.T.A., Phys. Chem. Res., 2024, vol. 12, pp. 205–217. https://doi.org/10.22036/PCR.2023.390388.2314

    Article  CAS  Google Scholar 

  22. Terreni, M., Taccani, M., and Pregnolato, M., Molecules, 2021, vol. 26, 2671. https://doi.org/10.3390/molecules26092671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Al-Jeilawi, O.H.R. and Oleiwi, A.Q., Baghdad Sci. J., 2023, vol. 20, pp. 994–1011. https://doi.org/10.21123/bsj.2023.7745

    Article  Google Scholar 

  24. Oleiwi, A.Q., Al-Jeilawi, O.H.R., and Dayl, S.A., Iraqi J. Sci., 2023, vol. 64, pp.1–12. https://doi.org/10.24996/ijs.2023.64.1.1

    Article  Google Scholar 

  25. Zeleke, D., Eswaramoorthy, R., Belay, Z., and Melaku, Y., J. Chem., 2020, vol. 2020, pp. 1–16. https://doi.org/10.1155/2020/1324096

    Article  CAS  Google Scholar 

  26. Zhang, G.-F., Liu, X., Zhang, S., Pan, B., and Liu, M.-L., Eur. J. Med. Chem., 2018, vol. 146, pp. 599–612. https://doi.org/10.1016/j.ejmech.2018.01.078

    Article  CAS  PubMed  Google Scholar 

  27. Bouzian, Y., Karrouchi, K., Sert, Y., Lai, C.-H., Mahi, L., Ahabchane, N.H., Talbaoui, A., Mague, J.T., and Essassi, E.M., J. Mol. Struct., 2020, vol. 1209, 127940. https://doi.org/10.1016/j.molstruc.2020.127940

  28. Bouzian, Y., Sert, Y., Khalid, K., Van Meervelt, L., Chkirate, K., Mahi, L., Ahabchane, N.H., Talbaoui, A., and Essassi, E.M., J. Mol. Struct., 2021, vol. 1246, 131217. https://doi.org/10.1016/j.molstruc.2021.131217

  29. Jeber, J.N., Hassan, R.F., and Hammood, M.K., Res. J. Chem. Environ., 2019, vol. 23, pp. 94–100.

    Google Scholar 

  30. Eissa, S.I., Farrag, A.M., Abbas, S.Y., El Shehry, M.F., Ragab, A., Fayed, E.A., and Ammar, Y.A., Bioorg. Chem., 2021, vol. 110, 104803. https://doi.org/10.1016/j.bioorg.2021.104803

  31. Jin, G., Li, Z., Xiao, F., Qi, X., and Sun, X., Bioorg. Chem., 2020, vol. 99, 103837. https://doi.org/10.1016/j.bioorg.2020.103837

  32. Al-Jeilawi, O.H.R., J. Pharm. Biol. Sci., 2018, vol. 13, pp. 18–22. https://doi.org/10.9790/3008-1301021822

    Article  Google Scholar 

  33. Shamaya, A.N.S. and Al-Jeilawi, O.H.R., J. Med. Chem. Sci., 2023, vol. 6, pp. 1065–1076. https://doi.org/10.26655/JMCHEMSCI.2023.5.12

    Article  CAS  Google Scholar 

  34. Al-Sultani, K.T.A., Al-Majidi, S.M.H., and Al-Jeilawi, O.H.R., Iraqi J. Sci. 2016, vol. 57, pp. 295–308.

    Google Scholar 

  35. Al-Sultani, K.T.A. and Al-Lami, N., Egypt. J. Chem., 2021, vol. 64, pp. 2953–2961. https://doi.org/10.21608/ejchem.2021.55736.3175

    Article  Google Scholar 

  36. Al-Jeilawi, O.H.R. and Al-Yassiri, M.A.H., Iraqi J. Sci., 2015, vol. 56, pp. 1–11.

    Google Scholar 

  37. Shamaya, A.N. and Al-Jeilawi, O.H., J. Int. Pharm. Res., 2021, vol. 13, p. 09752366. https://doi.org/10.31838/ijpr/2021.13.02.212

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oday H. R. Al-Jeilawi.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Jeilawi, O.H., Tuama, S.H., Hussein, I.A. et al. Synthesis, Characterization, and Biological Evaluation of New Cyclic Quinazoline Derivatives as Potential Antibacterial and Antifungal Agents. Dokl Chem 514, 27–34 (2024). https://doi.org/10.1134/S0012500823600554

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500823600554

Keywords:

Navigation