Skip to main content
Log in

Design, synthesis and biological evaluation of 8-aminoquinoline-1,2,3-triazole hybrid derivatives as potential antimicrobial agents

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A library of 20 novel quinoline-1,2,3-triazole hybrid compounds were synthesized by starting from 8-aminoquinoline to discover new pharmacophores exhibiting antimicrobial activities. Effective and targeted selective biologically active molecules through conjugation of diversely substituted triazoles and 8-aminoquinoline were achieved successfully with 1,4-disubstituted regioisomer product in the 3 + 2 cycloaddition reaction, as expected. All the synthesized compounds were evaluated for antimicrobial activity against different antibacterial and antifungal pathogenic strains. Pleasingly, the compound 9a was found as the most potent against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterococcus faecalis, Staphylococcus aureus, Streptococcus pneumoniae, Bacillus subtilis, Candida albicans and Candida parapsilosis strains. Preliminary screening results indicated that triazole linked quinoline compounds demonstrate promising antimicrobial activities against Gram (+) and Gram (−) bacterial and fungi strains. Furthermore, the pharmacokinetic properties of the quinoline-1,2,3-triazole hybrid compounds were analyzed to evaluate their potential as drug candidates, which indicated that all compounds are in agreement with Lipinski’s rule of five.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1

Similar content being viewed by others

References

  1. Miller JR, Waldrop GL. Discovery of novel antibacterials. Expert Opin Drug Discov. 2010;5:145–54.

    Article  CAS  PubMed  Google Scholar 

  2. Kong Q, Yang Y. Recent advances in antibacterial agents. Bioorg Med Chem Lett. 2021;35:127799.

    Article  CAS  PubMed  Google Scholar 

  3. Giamarellou H, Poulakou G. Multidrug-resistant gram-negative infections. Drugs. 2009;69:1879–901.

    Article  CAS  PubMed  Google Scholar 

  4. Arias CA, Murray BE. Antibiotic-resistant bugs in the 21st century—a clinical super-challenge. N Engl J Med. 2009;360:439–43.

    Article  CAS  PubMed  Google Scholar 

  5. Pokrovskaya V, Baasov T. Dual-acting hybrid antibiotics: a promising strategy to combat bacterial resistance. Expert Opin Drug Discov. 2010;5:883–902.

    Article  CAS  PubMed  Google Scholar 

  6. Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem. 2014;57:10257–74.

    Article  CAS  PubMed  Google Scholar 

  7. Thomas KD, Adhikari AV, Shetty NS. Design, synthesis and antimicrobial activities of some new quinoline derivatives carrying 1,2,3-triazole moiety. Eur J Med Chem. 2010;45:3803–10.

    Article  CAS  PubMed  Google Scholar 

  8. Zablotskaya A, Segal I, Geronikaki A, Shestakova I, Nikolajeva V, Makarenkova G. N-Heterocyclic choline analogues based on 1,2,3,4-tetrahydro(iso)quinoline scaffold with anticancer and anti-infective dual action. Pharmacol Rep. 2017;69:575–81.

    Article  CAS  PubMed  Google Scholar 

  9. Uddin A, Chawla M, Irfan I, Mahajan S, Singh S, Abid M. Medicinal chemistry updates on quinoline- and endoperoxide-based hybrids with potent antimalarial activity. RSC Med Chem. 2021;12:24–42.

    Article  CAS  PubMed  Google Scholar 

  10. Sun N, Du R-L, Zheng Y-Y, Huang B-H, Guo Q, Zhang R-F, et al. Antibacterial activity of N-methylbenzofuro[3,2-b]quinoline and N-methylbenzoindolo[3,2-b]-quinoline derivatives and study of their mode of action.Eur J Med Chem. 2017;135:1–11.

    Article  CAS  PubMed  Google Scholar 

  11. García E, Coa JC, Otero E, Carda M, Vélez ID, Robledo SM, et al. Synthesis and antiprotozoal activity of furanchalcone–quinoline, furanchalcone–chromone and furanchalcone–imidazole hybrids. Med Chem Res. 2018;27:497–511.

    Article  Google Scholar 

  12. Nathubhai A, Haikarainen T, Koivunen J, Murthy S, Koumanov F, Lloyd M. D. et al. Highly potent and isoform selective dual site binding tankyrase/Wnt signaling inhibitors that increase cellular glucose uptake and have antiproliferative activity. J Med Chem. 2017;60:814–20.

    Article  CAS  PubMed  Google Scholar 

  13. Fouda AM. Halogenated 2-amino-4H-pyrano[3,2-h]quinoline-3-carbonitriles as antitumor agents and structure–activity relationships of the 4-, 6-, and 9-positions. Med Chem Res. 2017;26:302–13.

    Article  CAS  Google Scholar 

  14. Pinz MP, Reis AS, de Oliveira RL, Voss GT, Vogt AG, Sacramento M, et al. 7-Chloro-4-phenylsulfonyl quinoline, a new antinociceptive and anti-inflammatory molecule: structural improvement of a quinoline derivate with pharmacological activity. Regul Toxicol Pharmacol. 2017;90:72–7.

    Article  CAS  PubMed  Google Scholar 

  15. Ben Yaakov D, Shadkchan Y, Albert N, Kontoyiannis DP, Osherov N. The quinoline bromoquinol exhibits broad-spectrum antifungal activity and induces oxidative stress and apoptosis in Aspergillus fumigatus. J Antimicrob Chemother. 2017;72:2263–72.

    Article  CAS  PubMed  Google Scholar 

  16. Murugavel S, Jacob Prasanna Stephen CS, Subashini R, AnanthaKrishnan D. Synthesis, structural elucidation, antioxidant, CT-DNA binding and molecular docking studies of novel chloroquinoline derivatives: Promising antioxidant and anti-diabetic agents. J Photochem Photobio B Biol. 2017;173:216–30.

    Article  CAS  Google Scholar 

  17. Zhong F, Geng G, Chen B, Pan T, Li Q, Zhang H, et al. Identification of benzenesulfonamide quinoline derivatives as potent HIV-1 replication inhibitors targeting Rev protein. Org Biomol Chem. 2015;13:1792–9.

    Article  CAS  PubMed  Google Scholar 

  18. El Shehry MF, Ghorab MM, Abbas SY, Fayed EA, Shedid SA, Ammar YA. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur J Med Chem. 2018;143:1463–73.

    Article  CAS  PubMed  Google Scholar 

  19. Ma X, Zhou W, Brun R. Synthesis, in vitro antitrypanosomal and antibacterial activity of phenoxy, phenylthio or benzyloxy substituted quinolones. Bioorg Med Chem Lett. 2009;19:986–9.

    Article  CAS  PubMed  Google Scholar 

  20. Sanchez JP, Domagala JM, Hagen SE, Heifetz CL, Hutt MP, Nichols JB, et al. Quinolone antibacterial agents. Synthesis and structure-activity relationships of 8-substituted quinoline-3-carboxylic acids and 1,8-naphthyridine-3-carboxylic acids. J Med Chem. 1988;31:983–91.

    Article  CAS  PubMed  Google Scholar 

  21. Gholap AR, Toti KS, Shirazi F, Kumari R, Bhat MK, Deshpande MV, et al. Synthesis and evaluation of antifungal properties of a series of the novel 2-amino-5-oxo-4-phenyl-5,6,7,8-tetrahydroquinoline-3-carbonitrile and its analogues. Bioorg Med Chem. 2007;15:6705–15.

    Article  CAS  PubMed  Google Scholar 

  22. Kharkar PS, Deodhar M, Kulkarni V. Design, synthesis, antifungal activity, and ADME prediction of functional analogues of terbinafine. Med Chem Res. 2008;18:421–32.

    Article  Google Scholar 

  23. Marella A, Tanwar OP, Saha R, Ali MR, Srivastava S, Akhter M, et al. Quinoline: a versatile heterocyclic. Saudi Pharm J. 2013;21:1–12.

    Article  PubMed  Google Scholar 

  24. Cui S-F, Ren Y, Zhang S-L, Peng X-M, Damu GLV, Geng R-X, et al. Synthesis and biological evaluation of a class of quinolone triazoles as potential antimicrobial agents and their interactions with calf thymus DNA. Bioorg Med Chem Lett. 2013;23:3267–72.

    Article  CAS  PubMed  Google Scholar 

  25. Peng X-M, Cai G-X, Zhou C-H. Recent developments in azole compounds as antibacterial and antifungal agents. Curr Top Med Chem. 2013;13:1963–2010.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang F-F, Gan L-L, Zhou C-H. Synthesis, antibacterial and antifungal activities of some carbazole derivatives. Bioorg Med Chem Lett. 2010;20:1881–4.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Q, Zhang J, Damu GLV, Wan K, Zhang H, Zhou C. Synthesis and biological activities of thio-triazole derivatives as novel potential antibacterial and antifungal agents. Sci China Chem. 2012;55:2134–53.

    Article  CAS  Google Scholar 

  28. Zhou C, Cui S, Lv J, Damu GLV, Wang Y. Recent advances in application of thiazole compounds. Sci Sin Chim. 2012;42:1105–31.

    Article  Google Scholar 

  29. Cui S-F, Peng L-P, Zhang H-Z, Rasheed S, Vijaya Kumar K, Zhou C-H. Novel hybrids of metronidazole and quinolones: synthesis, bioactive evaluation, cytotoxicity, preliminary antimicrobial mechanism and effect of metal ions on their transportation by human serum albumin. Eur J Med Chem. 2014;86:318–34.

    Article  CAS  PubMed  Google Scholar 

  30. Parente-Rocha JA, Bailão AM, Amaral AC, Taborda CP, Paccez JD, Borges CL, et al. Antifungal resistance, metabolic routes as drug targets, and new antifungal agents: an overview about endemic dimorphic fungi. Mediators Inflamm. 2017;2017:9870679

    Article  PubMed  PubMed Central  Google Scholar 

  31. Anusionwu CG, Aderibigbe BA, Mbianda XY. Hybrid molecules development: a versatile landscape for the control of antifungal drug resistance: a review. mini-reviews. Med Chem. 2019;19:450–64.

    CAS  Google Scholar 

  32. Castaldo N, Givone F, Peghin M, Righi E, Sartor A, Bassetti M. Multidrug-resistant Pseudomonas aeruginosa skin and soft-tissue infection successfully treated with ceftolozane/tazobactam. J Glob Antimicrob Resist. 2017;9:100–2.

    Article  PubMed  Google Scholar 

  33. Kuti JL, Pettit RS, Neu N, Cies JJ, Lapin C, Muhlebach MS, et al. Microbiological activity of ceftolozane/tazobactam, ceftazidime, meropenem, and piperacillin/tazobactam against Pseudomonas aeruginosa isolated from children with cystic fibrosis. Diagn Microbiol Infect Dis. 2015;83:53–5.

    Article  CAS  PubMed  Google Scholar 

  34. Krstulović L, Stolić I, Jukić M, Opačak-Bernardi T, Starčević K, Bajić M, et al. New quinoline-arylamidine hybrids: synthesis, DNA/RNA binding and antitumor activity. Eur J Med Chem. 2017;137:196–210.

    Article  PubMed  Google Scholar 

  35. Walsh J, Bell A. Hybrid drugs for malaria. Curr Pharm Des. 2009;15:2970–85.

    Article  CAS  PubMed  Google Scholar 

  36. Muregi FW, Ishih A. Next-generation antimalarial drugs: hybrid molecules as a new strategy in drug design. Drug Dev Res. 2010;71:20–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Vandekerckhove S, D’hooghe M. Quinoline-based antimalarial hybrid compounds. Bioorg Med Chem. 2015;23:5098–119.

    Article  CAS  PubMed  Google Scholar 

  38. Gupta V, Datta P. Next-generation strategy for treating drug resistant bacteria: antibiotic hybrids. Indian J Med Res. 2019;149:97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alovero F, Nieto M, Mazzieri MR, Then R, Manzo RH. Mode of action of sulfanilyl fluoroquinolones. Antimicrob Agents Chemother. 1998;42:1495–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Locher HH, Caspers P, Bruyère T, Schroeder S, Pfaff P, Knezevic A, et al. Investigations of the mode of action and resistance development of cadazolid, a new antibiotic for treatment of Clostridium difficile infections. Antimicrob Agents Chemother. 2014;58:901–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gorityala BK, Guchhait G, Goswami S, Fernando DM, Kumar A, Zhanel GG, et al. Hybrid antibiotic overcomes resistance in P. aeruginosa by enhancing outer membrane penetration and reducing efflux. J Med Chem. 2016;59:8441–55.

    Article  CAS  PubMed  Google Scholar 

  42. Shavit M, Pokrovskaya V, Belakhov V, Baasov T. Covalently linked kanamycin—Ciprofloxacin hybrid antibiotics as a tool to fight bacterial resistance. Bioorg Med Chem. 2017;25:2917–25.

    Article  CAS  PubMed  Google Scholar 

  43. Meunier B. Hybrid molecules with a dual mode of action: dream or reality? Acc Chem Res. 2008;41:69–77.

    Article  CAS  PubMed  Google Scholar 

  44. Ferlin MG, Chiarelotto G, Castagliuolo I. Synthesis and characterization of some N-mannich bases of [1,2,3]triazoloquinolines. J Heterocycl Chem. 2002;39:631–8.

    Article  CAS  Google Scholar 

  45. Choi H, Shirley HJ, Hume PA, Brimble MA, Furkert DP. Unexpected direct synthesis of N-Vinyl amides through vinyl azide–enolate [3+2] cycloaddition. Angew Chem Int Ed. 2017;56:7420–4.

    Article  CAS  Google Scholar 

  46. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed. 2002;41:2596–9.

    Article  CAS  Google Scholar 

  47. Freitas LB, de O, Borgati TF, de Freitas RP, Ruiz ALTG, Marchetti GM, et al. Synthesis and antiproliferative activity of 8-hydroxyquinoline derivatives containing a 1,2,3-triazole moiety. Eur J Med Chem. 2014;84:595–604.

    Article  CAS  PubMed  Google Scholar 

  48. Totobenazara J, Burke AJ. New click-chemistry methods for 1,2,3-triazoles synthesis: recent advances and applications. Tetrahedron Lett. 2015;56:2853–9.

    Article  CAS  Google Scholar 

  49. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25.

    Article  CAS  Google Scholar 

  50. Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1:337–41.

    Article  CAS  PubMed  Google Scholar 

  51. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45:2615–23.

    Article  CAS  PubMed  Google Scholar 

  52. Lalitha PSS. Calculation of molecular lipophilicity and drug likeness for few heterocycles. Orient J Chem. 2010;26:135–141.

    CAS  Google Scholar 

  53. Manohar S, Khan SI, Rawat DS. Synthesis of 4-aminoquinoline-1,2,3-triazole and 4-aminoquinoline-1,2,3-triazole-1,3,5-triazine hybrids as potential antimalarial agents. Chem Biol Drug Des. 2011;78:124–36.

  54. Woods GL, Washington JA. Antibacterial susceptibility tests: Dilution and disk diffusion method. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (eds). Manual of Clinical Microbiology, ed 6. Washington DC: American Society for Microbiology, 1995:1327–1341.

  55. Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: general principles and contemporary practices. Clin Infect Dis. 1998;26:973–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Dr. Ramazan Altundaş, Prof. Dr. Öztekin Algül and Prof. Dr. Aylin Döğen for valuable discussions and helpful editorial comment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irem Kulu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albayrak, F., Çiçek, M., Alkaya, D. et al. Design, synthesis and biological evaluation of 8-aminoquinoline-1,2,3-triazole hybrid derivatives as potential antimicrobial agents. Med Chem Res 31, 652–665 (2022). https://doi.org/10.1007/s00044-022-02866-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02866-2

Keywords

Navigation