Skip to main content
Log in

Relationship between Phytocenotic Diversity of the Northeastern Transbaikal Orobiome and Bioclimatic Parameters

  • Published:
Doklady Biological Sciences Aims and scope Submit manuscript

Abstract—

The most important spatial patterns of plant cover of the Northern Transbaikalia, its regional features being represented by the structure of altitudinal zonality of the Northeastern Transbaikal orobiome, have been determined in relationship with the climatic factor. The regional climate assessment of the altitudinal belt structure of the plant cover of the orobiome has been performed for typological subdivisions of the highest hierarchic level (phratries of the classes of plant formations) using the BioClim global climate model. Principal component analysis, discriminant and cluster analysis were used to demonstrate that the summer ombrothermic index, continentality and climate moisture indices and the mean annual rainfall of many years are the most significant bioclimatic parameters determining the spatial structure of plant cover in the mountain taiga, subgoletz, mountain tundra and goletz belts. The background communities of orobiome belts develop under the conditions of continental climate (continentality index from 36 to 50). Heat supply parameters, first of all, in the vegetation period, are crucial for the spatial differentiation of altitudinal subelts, characterizing the change of light forest and dwarf pine communities in the subgoletz belt, larch, larch–pine and dark-coniferous forests in the mountain taiga belt. Moisture supply is related to the regional differences in the typological diversity of the belts, which are manifested in the development of more moisture-demanding fir–spruce forests in the low parts of the Patom Highland (rainfall amount more than 450 mm per year) and pine forests in the intermountain basins of the Stanovoy Highlands, existing under the conditions with the maximum annual temperature amplitude and low rainfall levels (up to 400 mm per year).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Aleksandrova, T.D. and Preobrazhenskiy, V.S., Landshafty malykh kotlovin gornoi taigi (Landscapes of Small Basins of Mountain Taiga), Moscow, 1964.

  2. Atlas Zabaykal’ya. Buryatskaya ASSR i Chitinskaya oblast' (Atlas of Transbaikalia. Buryat ASSR and Chita Region), Irkutsk, 1967.

  3. Belov, A.V., Karta rastitel’nosti yuga Vostochnoi Sibiri. Printsipy i metody kartografirovaniya (Vegetation Map of the South of East Siberia. Principles and Methods of Compilation), Geobot. Kartograf., 1973, pp. 16–30.

  4. Bocharnikov, M.V., Ogureeva, G.N., and Luvsandorj, J., Regional features of the altitudinal gradients in Northern Transbaikalia vegetation cover, Geogr. Environ, Sustainability, 2018, vol. 11, no. 4, pp. 67–84. https://doi.org/10.24057/2071-9388-2018-11-4-67-84

    Article  Google Scholar 

  5. Box, E.O., Factors determining distributions of tree species and plant functional types, Vegetatio, 1995, vol. 121, pp. 101–116. https://doi.org/10.1007/978-94-011-0343-5_10

    Article  Google Scholar 

  6. Buks, I.I., Metodika sostavleniya i kratkii analiz korre-lyatsionnoi ekologo-fitotsenologicheskoi karty Aziatskoi Rossii. M 1 : 7  500  000 (Techniques of Compiling and Analysis of Correlational Eco-Phytocoenological Map of Asian Russia, Scale 1 : 7 500 000), Geobot. Kartograf., 1976, pp. 44–51.

  7. Carballeira, A., Devesa, C., Retuerto, R., Santillan, E., and Ucieda, F., Bioclimatologia de Galicia. Fund Petro Barrie La Coruna, Spain, 1983, pp. 1–392.

    Google Scholar 

  8. Czerepanov, S.K., Vascular Plants of Russia and Adjacent States (the Former USSR), Cambridge, 1995.

  9. Conrad, V., Usual formulas of continentality and their limits of validity, Trans. Am. Geophys. Union, 1946, vol. 27, no. 5, pp. 663–664.

    Article  Google Scholar 

  10. Drobushevskaya, O.V. and Nazimova, D.I., Climatic variants of the light-coniferous low-mountain subtaiga in Southern Siberia, Geogr. Prir. Resur., 2006, vol. 2, pp. 21–27.

    Google Scholar 

  11. Drobushevskaya, O.V. and Tzaregorodtzev, V.G., Geographic and climatic versions of the light coniferous grass forests of Siberia, Sib. Ekol. Zh., 2007, no. 2, pp. 211–219.

  12. Emberger, L., Sur une Formule Climatique et ses Applications en Botanique, Paris: CR Hebd. Acad. Sci., 1930, vol. 191, pp. 389–391.

    Google Scholar 

  13. Fick, S.E. and Hijmans, R.J., WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 2017, vol. 37, pp. 4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  14. Garaschenko, A.V., Flora i rastitel’nost’ Verkhnecharskoi kotloviny (Severnoe Zabajkal’e) (Flora and Vegetation of the Verkhnecharskaya Depression (Northern Transbaikalia)), Novosibirsk, 1993.

  15. Gavilan, R.G., The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central, Int. J. Biometeorol., 2005, vol. 50, pp. 111–120. https://doi.org/10.1007/s00484-005-0271-5

    Article  PubMed  Google Scholar 

  16. Golubyatnikov, L.L. and Denisenko, E.A., Impact of climatic changes on the productivity of vegetation cover in European Russia, Ispol’z. Okhr. Prir. Resur. Ross., 2004, vol. 1, pp. 78–85.

    Google Scholar 

  17. Gopar-Merino, L.F., Velazquez, A., and Gimenez de Azcarate, J., Bioclimatic mapping as a new method to assess effects of climatic change, Ecosphere, 2015, vol. 6, no. 1, pp. 1–12. https://doi.org/10.1890/ES14-00138.1

    Article  Google Scholar 

  18. Gorichev, Yu.P. and Davydychev, A.N., Zonal forests formations in South Urals: geographical distribution and position in space of climatic factors, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2010, vol. 12, nos. 1–3, pp. 867–869.

    Google Scholar 

  19. Greig-Smith, P., Quantitative Plant Ecology, Berkeley, 1983.

    Google Scholar 

  20. Grebenschikov, O.S., Experience in the climatic characteristics of the main vegetation formations of the Caucasus, Bot. Zh., 1974, vol. 59, no. 2, pp. 161–173.

    Google Scholar 

  21. Hais, M., Chytry, M., and Horsak, M., Exposure-related forest-steppe: A diverse landscape type determined by topography and climate, J. Arid Environ., 2016, vol. 135, pp. 75–84. https://doi.org/10.1016/j.jaridenv.2016.08.011

    Article  Google Scholar 

  22. Hamet-Ahti, L., The boreal zone and its biotic subdivision, Fennia, 1981, vol. 159, no. 1, pp. 69–75.

    Google Scholar 

  23. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A., Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 2005, vol. 25, no. 15, pp. 1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  24. Kolomytz, E.G., Snezhnyy pokrov gornotaezhnykh landshaftov Severnogo Zabaykal’ya (Snow Cover of Mountain-Taiga Landscapes of Northern Transbaikalia), Moscow–Leningrad, 1966.

    Google Scholar 

  25. Buks, I.I., Baiborodin, V.N., and Timirbaeva, L.S., Korrelyatsionnaya ekologo-fitotsenoticheskaya karta Aziatskoi chasti Rossii. M 1 : 7  500  000 (Correlation Ecological-Phytocenotic Map of the Asian part of Russia: S. 1 : 7 500 000), Irkutsk, 1977.

  26. Krestov, P.V., Climatic control of zonal vegetation in Northeast Asia with special accent to the continentality-oceanicity gradient, in Vegetation Mapping Series: Proceedings of the Fifth Symposium of Vegetation Diversity in Taiwan, Taipei, 2007, vol. 9, pp. 175–178.

  27. Lang, G.E., Reiners, W.A., and Heier, R.K., Potential alternation of precipitation chemistry by epiphytic lichens, Oecologia, 1976, vol. 25, no. 3, pp. 229–241. https://doi.org/10.1007/BF00345100

    Article  PubMed  Google Scholar 

  28. Major, J., A climatic index to vascular plant activity, Ecology, 1963, vol. 44, pp. 485–498. https://doi.org/10.2307/1932527

    Article  Google Scholar 

  29. Ogureeva, G.N., Leonova, N.B., Emel’yanova, L.G., et al., Karta “Biomy Rossii” v serii kart prirody dlya vysshei shkoly (M 1 : 7  500  000) (Map «Biomes of Russia» (M 1 : 7 500 000)), Moscow, 2018.

  30. Molozhnikov, V.N., Rastitel’nye soobshchestva Pribaikal’ya (Plant Communities of the Baikal Region), Novosibirsk, 1986.

    Google Scholar 

  31. Mucina, L., Biome: evolution of a crucial ecological and biogeographical concept, New Phytol., 2019, vol. 222, pp. 97–114. https://doi.org/10.1111/nph.15609

    Article  PubMed  Google Scholar 

  32. Nakamura, Y. and Krestov, P.V., Biogeographical diversity of alpine vegetation in the oceanic regions of Northeast Asia, in Berichte der Reinhold-Tuxen-Gesellschaft, 2007, vol. 19, pp. 117–129.

  33. Nakamura, Y., Krestov, P.V., and Omelko, A.M., Bioclimate and vegetation complexes in Northeast Asia: first approximation to integrated study, Phytocoenologia, 2007, vol. 37, nos. 3–4, pp. 443–470. https://doi.org/10.1127/0340-269X/2007/0037-0443

    Article  Google Scholar 

  34. Namzalov, B.B., On some aspects of the geography of vegetation in Buryatia, in Issledovaniya flory i rastitel’nosti Zabaykal’ya (Studies of the Flora and Vegetation of Transbaikalia), Ulan-Ude, 1998, pp. 72–76.

  35. Nazimova, D.I., Climatic ordination of forest ecosystems as the basis for their classification, Lesovedenie, 1995, vol. 4, pp. 63–73.

    Google Scholar 

  36. Nazimova, D.I., Ermakov, N.B., Andreeva, N.M., and Stepanov, N.V., Conceptual model of structural biodiversity of the zonal classes of forest ecosystems of Northern Eurasia, Sib. Ekol. Zh., 2004, vol. 11, no. 5, pp. 745–756.

    Google Scholar 

  37. Nazimova, D.I., Ponomarev, E.I., Stepanov, N.V., and Fedotova, E.V., Chern dark coniferous forests in Southern Krasnoyarsk krai and problems of their general mapping, Lesovedenie, 2005, vol. 1, pp. 12–18.

    Google Scholar 

  38. Neshataeva, V.Yu., Siberian dwarf-pine (Pinus pumila (Pall.) Regel) communities in the Kamchatka peninsula, Rastit. Ross., 2011, vol. 19, pp. 71–100.

    Google Scholar 

  39. Ogureeva, G.N., Botanicheskaya geografiya Altaya (Botanical Geography of Altai), Moscow, 1980.

    Google Scholar 

  40. Ogureeva, G.N., Karta “Zony i tipy poyasnosti rastitel’nosti Rossii i sopredel’nykh territoriy” (M 1 : 7  500  000) (Map “Zones and Types of Altitudinal Zonation of Vegetation of Russia and Adjacent Areas” (M 1 : 7 500 000)), Moscow, 1999.

  41. Ogureeva, G.N. and Bocharnikov, M.V., Orobiomes as the basic units of the regional evaluation of the mountain regions biodiversity, Ecosyst.: Ecol. Dyn., 2017, vol. 1, no. 2, pp. 52–81.

    Google Scholar 

  42. Panferova, E.I. and Chebakova, N.M., Bioclimatic models of primary mountain forests in Southern Siberia, Lesovedenie, 2009, vol. 5, pp. 34–42.

    Google Scholar 

  43. Polikarpov, N.P., Chebakova, N.M., and Nazimo-va, D.I., Klimat i gornye lesa Yuzhnoi Sibiri (Climate and Mountain Forests of Southern Siberia), Novosibirsk, 1986.

    Google Scholar 

  44. Popov, S.Yu., Distribution pattern of seven Polytrichum species in the East European Plain and Eastern Fennoscandia, Botanica Pacifica, 2018, vol. 7, no. 1, pp. 25–40. https://doi.org/10.17581/bp.2018.07108

    Article  Google Scholar 

  45. Prozorov, Yu.S., Bolota marevogo landshafta Sredne-Amurskoi nizmennosti (Swamps of the Haze Landscape of the Middle Amur Lowland), Moscow, 1961.

  46. Retuerto, R. and Carballeira, A., Phytoecological importance, mutual redundancy and phytological threshold values of certain climatic factors, Vegetatio, 1990, vol. 90, pp. 47–62. https://doi.org/10.1007/BF00045588

    Article  Google Scholar 

  47. Retuerto, R. and Carballeira, A., Use of direct gradient analysis to study the climate-vegetation relationships in Galicia, Spain, Vegetatio, 1992, vol. 101, pp. 183–194. https://doi.org/10.1007/BF00033201

    Article  Google Scholar 

  48. Rivas-Martinez, S., Clasificacion bioclimatica de la Tierra, Folia Bot. Matritensis, 1996, vol. 16, pp. 1–32.

    Google Scholar 

  49. Rivas-Martinez, S. and Armaiz, C., Bioclimatologia y vegetacion en la Peninsula Iberica, Bull. Soc. Bot. France, Actual. Bot., 1984, vol. 131, nos. 2–4, pp. 110–120.

    Google Scholar 

  50. Rivas-Martinez, S., Canto, P., Fernandez-Gonzalez, F., Molina, J.A., Pizarro, J.M., and Sanchez-Mata, D., Synopsis of the Sierra de Guadarrama vegetation, Itinera Geobot., 1999, vol. 13, pp. 189–206.

    Google Scholar 

  51. Rivas-Martinez Penas, A. and Diaz, T.E., Bioclimatic map of Europe, Thermoclimatic Belts, Cartographic Service, University of Leon, 2004.

    Google Scholar 

  52. Rivas-Martinez, S., Rivas Saenz, S., and Penas, A., World-wide bioclimatic classification system, Global Geobot., 2011, vol. 1, no. 1, pp. 1–634. https://doi.org/10.5616/gg110001

    Article  Google Scholar 

  53. Rivas-Martinez, S., Rivas-Saenz, S., and Penas, A., Synoptical Table of Worldwide Bioclimatic Classification, Phytosociological Res. Center, 2016. www.globalbioclimatics.org.

  54. Sedel’nikov, V.P., Vysokogornaya rastitel’nost' Altae-Sayanskoi gornoi oblasti (High Mountain Vegetation of the Altai-Sayan Mountain Region), Novosibirsk, 1988.

    Google Scholar 

  55. Shumilova, L.V., Botanicheskaya geografiya Sibiri (Botanical Geography of Siberia), Tomsk, 1962.

    Google Scholar 

  56. Sofronov, A.P., Geobotanical mapping of the vegetation cover in the basins of the North-Eastern Cisbaikalia, in Geobotanicheskoe kartografirovanie (Geobotanical Mapping), 2015, pp. 62–77.

    Google Scholar 

  57. Sochava, V.B., Classification and mapping of the highest subdivisions of the Earth’s vegetation, in Sovremennye problemy geografii (Modern Problems of Geography), Moscow, 1964, pp. 167–173.

    Google Scholar 

  58. Sochava, V.B., Rastitel’nyi pokrov na tematicheskikh kartakh (Vegetation Cover on Thematic Maps), Novosibirsk, 1979.

    Google Scholar 

  59. Sochava, V.B., Geograficheskie aspekty sibirskoi taigi (Geographic Aspects of the Siberian Taiga), Novosibirsk, 1980.

    Google Scholar 

  60. Stonevicius, E., Stankunavicius, G., and Rimkus, E., Continentality and oceanity in the mid and high latitudes of the northern hemisphere and their links to atmospheric circulation, Adv. Meteorol., 2018, p. 5746191. https://doi.org/10.1155/2018/5746191

  61. Telyatnikov, M.Yu., Syntaxonomy of alpine meadows, open larch forests, dwarf birch and lichen tundras of the Eastern Sayan highlands, Rastit. Mir Aziatskoi Ross., 2015, vol. 1, no. 14, pp. 49–65.

    Google Scholar 

  62. Tolmachev, A.G., The main ways of the formation of vegetation of high-mountainous landscapes of the northern hemisphere, Bot. Zh., 1948, vol. 33, no. 2, pp. 161–180.

    Google Scholar 

  63. Tuhkanen, S., A circumboreal system of climatic-phytogeographical regions, Acta Bot. Fenn., 1984, vol. 127, pp. 1–50.

    Google Scholar 

  64. Valencia-Barrera, R., Comtois, P., and Fernandez-Gonzalez, D., Bioclimatic indices as a tool in pollen forecasting, Int. J. Biometeorol., 2002, vol. 46, no. 4, pp. 171–175. https://doi.org/10.1007/s00484-002-0138-y

    Article  PubMed  Google Scholar 

  65. Vladimirov, I.N., Sofronov, A.P., Sorokovoy, A.A., Kobylkin, D.V., and Frolov, A.A., Vegetation cover structure in the western part of the Upper Angara depression, Geogr. Nat. Resour., 2014, vol. 2, pp. 44–53.

    Google Scholar 

  66. Walter, H., Vegetation of the Earth and Ecological Systems of the Geo-Biosphere, New York, 1985.

    Book  Google Scholar 

  67. Walter, H. and Breckle, S.-W., Okologishe Grundlagen in Global Sicht, Stuttgart, 1991.

    Google Scholar 

  68. Ward, J.H., Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc., 1963, vol. 58, pp. 236–244. https://doi.org/10.1080/01621459.1963.10500845

    Article  Google Scholar 

  69. Yim, Y.J. and Kira, T., Distribution of forest vegetation and climate in the Korean Peninsula I. Distribution of some indices of thermal climate, Jpn. J. Ecol., 1975, vol. 25, no. 2, pp. 77–88. https://doi.org/10.18960/seitai.25.2_77

    Article  Google Scholar 

  70. Zibzeev, E.G., Basargin, E.A., and Nedovesova, T.A., Diversity and ecological-cenotic features of crooked birch forests with Betula tortuosa Ledeb. in the Altai-Sayan mountain region, Rastit. Ross., 2015, vol. 26, pp. 38–54.

    Google Scholar 

Download references

Funding

The work was supported by the State Assignment “Spatial and Temporal Organization of Ecosystems under Conditions of Environmental Changes” (the concept of ecosystem diversity), on the basis of the Center for collective use “Herbarium of MWG” supported by the Program of development of the Moscow State University (characteristics of the species diversity of communities), as well as by the Russian Science Foundation (project no. 17-77-10142) (analysis of relationships between vegetation and climate).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Bocharnikov.

Ethics declarations

Conflict of interests. The author declares that he has no conflicts of interest.

This article does not contain any studies involving animals or human subjects performed by the author.

Additional information

Translated by E. V. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocharnikov, M.V. Relationship between Phytocenotic Diversity of the Northeastern Transbaikal Orobiome and Bioclimatic Parameters. Dokl Biol Sci 507, 281–300 (2022). https://doi.org/10.1134/S0012496622060011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012496622060011

Keywords:

Navigation