Skip to main content
Log in

The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central

  • Original Article
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

In this study, over 100 phytoclimatic indices and other climatic parameters were calculated using the climatic data from 260 meteorological stations in a Mediterranean territory located in the centre of the Iberian Peninsula. The nature of these indices was very different; some of them expressed general climatic features (e.g. continentality), while others were formulated for different Mediterranean territories and included particular limits of those indices that expressed differences in vegetation distribution. We wanted to know whether all of these indices were able to explain changes in vegetation on a spatial scale, and whether their boundaries worked similarly to the original territory. As they were so numerous, we investigated whether any of them were redundant. To relate vegetation to climate parameters we preferred to use its hierarchical nature, in discrete units (characterized by one or more dominant or co-dominant species), although it is known to vary continuously. These units give clearer results in this kind of phytoclimatic study. We have therefore used the main communities that represent natural potential vegetation. Multivariate and estimative analyses were used as statistical methods. The classification showed different levels of correlation among climatic parameters, but all of them were over 0.5. One hundred and eleven parameters were grouped into five larger groups: temperature (T), annual pluviothermic indices (PTY), summer pluviothermic indices (SPT), winter potential evapotranspiration (WPET) and thermal continentality indices (K). The remaining parameters showed low correlations with these five groups; some of them revealed obvious spatial changes in vegetation, such as summer hydric parameters that were zero in most vegetation types but not in high mountain vegetation. Others showed no clear results. For example, the Kerner index, an index of thermal continentality, showed lower values than expected for certain particular types of vegetation. Parameters relating to the water balance turned out to be very discriminative for separating vegetation types according to the season or the month when water begins to be scarce. Thus, water availability in soils is a limiting factor for the development of vegetation in spring or autumn as well as in summer. As expected, precipitation and temperature discriminated the altitudinal levels of vegetation. Finally, these index limits only worked in the territories where they were formulated, or in nearby areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. A relevé is a list of all plants that appear in a measured area. Every taxon has a cover data, estimated by the researcher.

References

  • Afifi AA, Azen SP (1979) Statistical analysis: a computer oriented approach. Academic, London

    Google Scholar 

  • Austin MP (1985) Continuum concept, ordination methods and niche theory. Ann Rev Ecol Syst 16:39–61

    Article  Google Scholar 

  • Blasi C, Carranza ML, Filesi L, Tilia A, Acosta A (1999) Relation between climate and vegetation along a Mediterranean-temperate boundary in central Italy. Global Ecol Biogeogr 8:17–27

    Article  Google Scholar 

  • Bolòs O (1985) Le territoire subméditerranéen et le territoire carpetano-atlantique dans la Péninsule Ibérique. Bot Helv 95:13–17

    Google Scholar 

  • Box EO (1981) Macroclimate and plant forms: an introduction to predictive modeling in phytogeography. Dr. W. Junk, The Hague

    Google Scholar 

  • Braun-Blanquet J (1928) Pflanzensoziologie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Capel Molina JJ (1981) Los climas de España. Oikos Tau, Barcelona

    Google Scholar 

  • De Martonne E (1926) L’indice d’aridité. Bull Assoc Geogr Fr 9:3–5

    Google Scholar 

  • De Martonne E (1955) Traité de Géographie Physique, 3rd edn. Armand Colin, Paris

    Google Scholar 

  • Emberger L (1930) Sur une formule climatique et ses applications en botanique. CR Hebd Acad Sci Paris 191:389–391

    Google Scholar 

  • Emberger L (1933) Nouvelle contribution a l’étude de la classification des groupements végétaux. Rev Gén Bot 14:1–145

    Google Scholar 

  • Emberger L (1954) Projet d’une classification des climates, du point de vue phytogéographique. Bull Soc Hist Nat Toulouse 78:159–180

    Google Scholar 

  • Fernández-González F (1997) Bioclimatología. In: Izco J et al (eds) Botánica. McGraw-Hill Interamericana, Madrid, pp 607–682

    Google Scholar 

  • Font-Tullot I (1983) Climatología de España y Portugal. Instituto Nacional de Meteorología. Ministerio de Agricultura, Pesca y Alimentación, Madrid

  • Gaussen H (1954) Théorie et classification des climats et microclimats. Le VIII Congr Int Bot Paris, pp 125–130

  • Gaussen H (1956) Le XVIII congrès international de Géographie, Rio de Janeiro, Août 1956. Ann Geogr 353:1–19

    Google Scholar 

  • Gavilán R (1994) Estudio de las relaciones entre la vegetación y el clima en el Sistema Central español. Dissertation, Universidad Complutense de Madrid

  • Gavilán R, Fernández-González F (1997) Climatic discrimination of Mediterranean broad-leaved sclerophilous and deciduous forests in central Spain. J Veg Sci 8:377–386

    Google Scholar 

  • Gavilán R, Fernández-González F, Blasi C (1998) Climatic classification and ordination of the Spanish Sistema Central: relationships with potential vegetation. Plant Ecol 139:1–11

    Article  Google Scholar 

  • Giacobbe A (1938) Schema di una teoria ecologica per la classificazione della vegetatione italiana. Nuovo Giorn Bot Ital 45:37–121

    Google Scholar 

  • Giacobbe A (1959) Nouvelles recherces écologiques sur l’aridité sans les pays de la Méditerranée occidentale. Naturalia Monspeliensia S Bot 11:7–27

    Google Scholar 

  • Grisebach A (1838) Ueber den einfluss des climats auf die Begränzung der naturlichen floren. Linnaea 12:159–200

    Google Scholar 

  • Härdtle W (1995) On the theoretical concept of the potential natural vegetation and proposals for an up-to-date modification. Folia Geobot Phytotax 30:263–276

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • McGill R., Tukey JW, Larsen WA (1978) Variation of box plots. Am Stat 32:12–16

    Google Scholar 

  • Montero de Burgos JL, González Rebollar JL (1983) Diagramas bioclimáticos. ICONA. Ministerio de Agricultura, Pesca y Alimentación, Madrid

  • Moravec J (1998) Reconstructed natural versus potential natural vegetation in vegetation mapping—a discussion of concepts. Appl Veg Sci 1:173–176

    Google Scholar 

  • Nahal I (1981) The Mediterranean climate from a biological viewpoint. In: Di Castri F, Goodall DW, Specht RL (eds) Mediterranean-type shrublands. Ecosystems of the World 11. Elsevier, Amsterdam, pp 63–86

    Google Scholar 

  • Philippis A (1937) Classificazioni ed indice del clima in rapporto alla vegetacione forestale italiana. Nuovo Giorn Bot Ital 44:1–142

    Google Scholar 

  • Podani J (1994) Multivariate Data Analysis in Ecology and Systematics. A methodological guide to the SYN-TAX 5.0 package. Ecological Computation Series (ECS), vol. 6. SPB Academic Publishing, The Hague

    Google Scholar 

  • Prentice KC (1990) Bioclimatic distribution of vegetation for general circulation model studies. J Geophys Res 95:11811–11830

    Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Google Scholar 

  • Retuerto R, Carballeira A (1990) Phytoecological importance, mutual redundancy and phytological threshold values of certain climatic factors. Vegetatio 90:47–62

    Article  Google Scholar 

  • Rivas-Martínez S (1983) Nuevo índice de termicidad para la región Mediterránea. In: Blanco de Pablos A (ed) Avances sobre la investigación en Bioclimatología. C.S.I.C., Salamanca, pp 370–380

    Google Scholar 

  • Rivas-Martínez S (1987) Memoria del mapa de series de la vegetación de España, 1:400.000. I.C.O.N.A., Serie Técnica. Ministerio de Agricultura, Pesca y Alimentación, Madrid

  • Rivas-Martínez S (1996) Clasificación bioclimática de la Tierra. Folia Bot Matritensis 16:1–32

    Google Scholar 

  • Rivas-Martínez S, Díaz TE, Fernández-González F, Izco J, Loidi J, Lousa M, Penas A (2002) Vascular plant communities of Spain and Portugal. Itinera Geobot 15:1–922

    Google Scholar 

  • Sneath PHA (1957) The application of computers to taxonomy. J Gen Microbiol 17:201–226

    CAS  PubMed  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Google Scholar 

  • Thornthwaite CW, Mather JR (1955) Instructions and tables for computing potential evapotranspiration and the water balance. Publ Climatol 10:181–311

    Google Scholar 

  • Tuhkanen S (1980) Climatic parameters and indices in plant geography. Acta Phytogeogr Suecica 67:1–110

    Google Scholar 

  • Tuhkanen S (1987) The phytogeographical position of the Faeroe Islands and their ecoclimatic correspondences on the other continents: problems associated with highly oceanic areas. Ann Bot Fenn 24:111–135

    Google Scholar 

  • Von Humboldt A (1807) Ideen zu einem Geographie der Pflazen nebst einem naturgemälde der Tropeländer. Tübingen

  • Wahlenberg G (1811) Kamtschadalische Laub und Lebermoose, gesammelt auf der russischen Entdeckungsreise von dem Herrn Hofrath Tilesius und untersucht. Mag Ges Narutf Fr 5:289–297

    Google Scholar 

  • Walter H (1952) Grundlagen des Pflanzensystems: Einführung in die spezielle Botanik für Studierende der Hochschulen. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Walter H (1985) Vegetation of the earth and ecological systems of the geo-biosphere. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Westhoff V, van der Maarel E (1978) The Braun-Blanquet approach. In: Whittaker RH (ed) Classification of plant communities. Dr. W. Junk, The Hague, pp 287–399

    Google Scholar 

  • Woodward FI (1987) Climate & plant distribution. Cambridge Studies in Ecology. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their comments on the manuscript and to Ms. Prudence Brook-Turner for revising the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario G. Gavilán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavilán, R.G. The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central. Int J Biometeorol 50, 111–120 (2005). https://doi.org/10.1007/s00484-005-0271-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-005-0271-5

Keywords

Navigation