Skip to main content
Log in

Intracortical Directed Connectivity for Information Retention in Visual–Spatial Working Memory

  • Published:
Doklady Biological Sciences Aims and scope Submit manuscript

Abstract

A group of 27 healthy young adults solved a task involving the working memory (WM) activation, consisting of the comparison between the spatial orientations of two sequentially presented square-wave luminance gratings. We investigated the effective (directed) connectivity patterns between the frontal and postcentral cortical regions related to the visual system. The connectivity was assessed using vector autoregression modeling of EEG. It was shown that the strength of the top-down right-hemispheric connectivity patterns directed from the frontal cortex to the visual areas in θ frequency was significantly lower at the stage of stimulus retention in the WM than at the stage of stimulus anticipation. On the contrary, in the α band the descending influences were slightly more intense. The results of the study showed the frequency-dependent dynamics of the descending influences of the frontal cortex on visual areas and confirm that the frontal cortex plays the role of a controlling and modulating center in the brain system underlying WM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. 
Fig. 2. 

Similar content being viewed by others

REFERENCES

  1. Miller, E.K., Lundqvist, M., and Bastos, A.M., Neuron, 2018, vol. 100, no. 2, pp. 463–475.

    Article  CAS  Google Scholar 

  2. Friston, K.J., Brain Connect., 2011, vol. 1, no. 1, pp. 13–36.

    Article  Google Scholar 

  3. Gazzaley, A. and Nobre, A.C., Trends Cogn. Sci., 2012, vol. 16.

  4. Cosman, J.D., Lowe, K.A., Zinke, W., et al., Curr. Biol. CB, 2018, vol. 28, no. 3, pp. 414–420.

    Article  CAS  Google Scholar 

  5. Squire, R.F., Noudoost, B., Schafer, R.J., et al., Annu. Rev. Neurosci., 2013, vol. 36, pp. 451–466.

    Article  CAS  Google Scholar 

  6. Talalay, I., Kurgansky, A., and Machinskaya, R., Psychophysiology, 2018, vol. 55, e13269.

    Article  CAS  Google Scholar 

  7. Fuster, J.M. and Alexander, G.E., Science, 1971, vol. 173, no. 3997, p. 652.

    Article  CAS  Google Scholar 

  8. Sreenivasan, K.K. and D’Esposito, M., Nature Rev. Neurosci., 2019, vol. 20, no. 8, pp. 466–481.

    Article  CAS  Google Scholar 

  9. Constantinidis, C., Funahashi, S., Lee, D., et al., J. Neurosci. Offic. J. Soc. Neurosci., 2018, vol. 38, no. 32, pp. 7020–7028.

    Article  CAS  Google Scholar 

  10. Kurganskii, A.V., Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2010, vol. 60, no. 6, p. 740.

    CAS  Google Scholar 

  11. Baccala, L., Sameshima, K., Ballester, G., et al., Appl. Sign. Proc., 1998, vol. 5, pp. 40–48.

    Article  Google Scholar 

  12. Mikhailova, E.S., Gerasimenko, N.Yu., and Slavuts-kaya, A.V., Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2019, vol. 69, no. 5, p. 578.

    Google Scholar 

  13. Gazzaley, A. and D’Esposito, M., in The Human Frontal Lobes, New York: Guilford Publications, 2006, 2nd edition, pp. 1–40.

    Google Scholar 

  14. Sauseng, P., Griesmayr, B., Freunberger, R., et al., Neurosci. Biobehav. Rev., 2010, vol. 34, no. 7, pp. 1015–1022.

    Article  Google Scholar 

  15. Wianda, E. and Ross, B., Brain Behav., 2019, vol. 9, no. 4, e01263.

    Article  Google Scholar 

  16. Bollinger, J., Rubens, M.T., Zanto, T.P., et al., J. Neurosci., 2010, vol. 30, no. 43, pp. 14399–14410.

    Article  CAS  Google Scholar 

  17. Magnussen, S., Trends Neurosci., 2000, vol. 23, no. 6, pp. 247–251.

    Article  CAS  Google Scholar 

  18. Sauseng, P., Hoppe, J., Klimesch, W., et al., Eur. J. Neurosci., 2007, vol. 25, pp. 587–593.

    Article  CAS  Google Scholar 

  19. Palva, S. and Palva, J.M., Trends Neurosci., 2007, vol. 30, no. 4, pp. 150–158.

    Article  CAS  Google Scholar 

  20. Fink, G.R., Halligan, P.W., Marshall, J.C., et al., Brain, 1997, vol. 120, p. 1779.

    Article  Google Scholar 

  21. Berger, B., Griesmayr, B., Minarik, T., et al., Nature Commun., 2019, vol. 10, no. 1, p. 4242.

    Article  CAS  Google Scholar 

Download references

Funding

The study was partially financially supported by the grant of Russian Foundation for Basic Research no. 19-013-00918/19 and the state budget expenditures of the state task of the Ministry of Education and Science of the Russian Federation for 2021–2023. Electrophysiological tests were conducted in the Common Use Center for the Research Equipment of Functional Brain Mapping in the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Mikhailova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All participants signed an informed consent. The research protocol was approved by the ethical committee of Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, protocol no. 1, January 15, 2020.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Sherstyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailova, E.S., Kurgansky, A.V., Nushtaeva, R.A. et al. Intracortical Directed Connectivity for Information Retention in Visual–Spatial Working Memory. Dokl Biol Sci 500, 133–137 (2021). https://doi.org/10.1134/S0012496621050070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012496621050070

Keywords:

Navigation