Skip to main content
Log in

Method of “transition into space of derivatives”: 40 years of evolution

  • Control Theory
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

In 1975, the “method of transition into space of derivatives” was proposed. It is an efficiently verifiable frequency criterion for the existence of a nontrivial periodic solution in multidimensional models of automatic control systems with one differentiable nonlinear term. The method used the classical torus principle and refrained from any constructions in the phase space of the system under study. Moreover, the method allowed researchers to broaden the class of systems to which it could be applied. In this work, we give a survey of the results presenting generalization and expansion of the method. We also show the connection between the method of transition into space of derivatives, the well-known generalized Poincaré–Bendixson principle proposed by R. A. Smith, and the results of contemporary authors who are active in the theory of oscillations in multidimensional systems. In the recent years, the author obtained frequency criteria for the existence of orbitally stable cycles in multiinput multioutput (MIMO) control systems and methods for the construction of multidimensional systems having a unique equilibrium and an arbitrarily prescribed number of orbitally stable cycles, which are described in the paper. The extension of the generalized Poincaré–Bendixson principle to multidimensional systems with angular coordinate is presented. We show the application of described methods of investigation of oscillation processes in multidimensional dynamical systems to solving S. Smale’s problem in the chemical kinetics theory of biological cells and also to finding hidden attractors of the generalized Chua system and the minimal global attractor of a system with a polynomial nonlinear term. The publication is illustrated by numerous examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burkin, I.M. and Leonov, G.A., Frequency Conditions for the Existence of a Nontrivial Periodic Solution of a Nonlinear System with a Stationary Nonlinearity, Metody i Modeli Upravl., 1975, no. 9, pp. 175–176.

    MathSciNet  Google Scholar 

  2. Burkin, I.M. and Leonov, G.A., The Existence of a Nontrivial Periodic Solutions in Self-Excited Oscillating Systems, Sibirsk. Mat. Zh., 1977, vol. 18, no. 2, pp. 251–262.

    MathSciNet  MATH  Google Scholar 

  3. Friedrichs, D.O., On Nonlinear Vibrations of Third Order, in Studies in Nonlinear Vibration Theory, Institute of Mathematics and Mechanics, New York: New York Univ., 1946, pp. 65–103.

    Google Scholar 

  4. Rauch, L.L., Oscillation of a Third Order Nonlinear Autonomous System, in Contribution to the Theory of Nonlinear Oscillations, Univ. Press, 1950, pp. 39–88.

    Google Scholar 

  5. Shirokorad, B.V., On Existence of a Cycle Beyond Absolute Stability Conditions of a Free-Dimensional System, Avtomat. i Telemekh., 1958, vol. 15, no. 10, pp. 953–967.

    Google Scholar 

  6. Sherman, S., A Third-Order Nonlinear System Arising from a Nuclear Spin Generator, Conf. Differ. Equ., 1963, no. 2, pp. 197–227.

    MathSciNet  MATH  Google Scholar 

  7. Vaisbord, E.M., On the Existence of a Periodic Solution of a Third-Order Nonlinear Differential Equation, Mat. Sb., 1962, vol. 56 (98), no. 1, pp. 43–58.

    MathSciNet  Google Scholar 

  8. Pliss, V.A., Nelokal’nye problemy teorii kolebanii (Nonlocal Problems in the Theory of Oscillations), Moscow: Nauka, 1964.

    Google Scholar 

  9. Vinogradov, N.N., Some Existence Theorems for a Periodic Solution of an Autonomous System of Six Differential Equations, Differ. Uravn., 1965, vol. 1, no. 3, pp. 330–334.

    MathSciNet  Google Scholar 

  10. Mulholland, R.J., Nonlinear Oscillations of a Third-Order Differential Equation, J. Nonlinear Mech., 1971, no. 6, pp. 279–294.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kamachrin, A.M., Existence and Uniqueness of a Periodic Solution to a Relay System with Hysteresis, Differ. Equ., 1972, no. 8, pp. 1505–1506.

    MathSciNet  Google Scholar 

  12. Leonov, G.A., Frequency Conditions for the Existence of Nontrivial Periodic Solutions in Autonomous Systems, Sibirsk. Mat. Zh., 1973, vol. 14, no. 6, pp. 1505–1506.

    MathSciNet  Google Scholar 

  13. Williamson, D., Periodic Motion in Nonlinear Systems, IEEE Trans. Automat. Control, 1975, vol. AC–20, no. 4, pp. 479–486.

    Article  MathSciNet  MATH  Google Scholar 

  14. Noldus, E., A Frequency Domain Approach to the Problem of the Existence of Periodic Motion in Autonomous Nonlinear Feedback Systems, Z. Angew. Math. Mech., 1969, no. 3, pp. 166–177.

    MathSciNet  MATH  Google Scholar 

  15. Noldus, E., A Counterpart of Popov’s Theorem for the Existence of Periodic Solutions, Internat. J. Control, 1971, vol. 13, no. 4, pp. 705–719.

    Article  MathSciNet  MATH  Google Scholar 

  16. Hastings, S., The Existence of Periodic Solutions to Nagumo’s Equation, Quart. J. Math. Oxford Ser., 1974, vol. 25, no. 2, pp. 369–378.

    Article  MathSciNet  MATH  Google Scholar 

  17. Hastings, S.P. and Murray, J.D., The Existence of Oscillatory Solutions in the Field-Noyes Model for the Belousov–Zhabotinskii Reaction, SIAM J. Appl. Math., 1975, vol. 28, no. 3, pp. 678–688.

    Article  MathSciNet  Google Scholar 

  18. Tyson, J.J., On the Existence of Oscillatory Solutions in Negative Feedback Cellular Control Process, Math. Biol., 1975, no. 1, pp. 311–315.

    Article  MathSciNet  MATH  Google Scholar 

  19. Smith, R.A., The Pincaré–Bendixson Theorem for Certain Differential Equations of Higher Order, Proc. Roy. Soc. Edinburgh Sect. A, 1979, vol. 83, no. 1–2, pp. 63–79.

    Article  MathSciNet  Google Scholar 

  20. Smith, R.A., Existence of Periodic Orbits of Autonomous Ordinary Differential Equations, Proc. Roy. Soc. Edinburgh Sect. A, 1980, vol. 85, no. 1–2, pp. 153–172.

    Article  MathSciNet  MATH  Google Scholar 

  21. Smith, R.A., An Index Theorem and Bendixson’s Negative Criterion for Certain Differential Equations of Higher Dimension, Proc. Roy. Soc. Edinburgh Sect. A, 1981, vol. 91, no. 1–2, pp. 63–77.

    Article  MathSciNet  MATH  Google Scholar 

  22. Smith, R.A., Certain Differential Equations Have Only Isolated Periodic Orbits, Ann. Mat. Pura Appl., 1984, vol. 137, pp. 217–244.

    Article  MathSciNet  MATH  Google Scholar 

  23. Smith, R.A., A Poincaré Index Theorem Concerning Periodic Orbits of Differential Equations, Proc. London Math. Soc., 1984, vol. 48, pp. 341–362.

    Article  MathSciNet  MATH  Google Scholar 

  24. Smith, R.A., Massera’s Convergence Theorem for Periodic Nonlinear Differential Equations, J. Math. Anal. Appl., 1986, vol. 120, no. 2, pp. 679–708.

    Article  MathSciNet  MATH  Google Scholar 

  25. Smith, R.A., Orbital Stability for Ordinary Differential Equations, J. Diffential Equations, 1987, vol. 69, no. 2, pp. 265–287.

    Article  MathSciNet  MATH  Google Scholar 

  26. Smith, R.A., A Poincaré–Bendixson Theory for Certain Retarded Functional-Differential Equations, Differential Integral Equations, 1992, vol. 5, no. 1, pp. 213–240.

    MathSciNet  MATH  Google Scholar 

  27. Smith, R.A., Some Modified Michaelis–Menten Equations Having Stable Closed Trajectories, Proc. Roy. Soc. Edinburgh Sect. A, 1988, vol. 109, no. 3–4, pp. 341–359.

    Article  MathSciNet  MATH  Google Scholar 

  28. Smith, R.A., Orbital Stability and Inertial Manifolds for Certain Reaction Diffusion Systems, Proc. London. Math. Soc., 1994, vol. 69, no. 1, pp. 91–120.

    Article  MathSciNet  MATH  Google Scholar 

  29. Mallet-Paret, J. and Smith, H.L., The Poincaré–Bendixson Theorem for Monotone Cyclic Feedback Systems, J. Dynam. Differential Equations, 1990, vol. 2, no. 4, pp. 367–421.

    Article  MathSciNet  MATH  Google Scholar 

  30. Mallet-Paret, J. and Sell, G.R., The Poincaré–Bendixson Theorem for Monotone Cyclic Feedback Systems with Delay, J. Differential Equations, 1996, vol. 125, no. 2, pp. 441–489.

    Article  MathSciNet  MATH  Google Scholar 

  31. Sanchez, L.A., Cones of Rank 2 and the Poincaré–Bendixson Property for a New Class of Monotone Systems, J. Differential Equations, 2009, vol. 216, no. 5, pp. 1170–1190.

    Google Scholar 

  32. Sanchez, L.A., Existence of Periodic Orbits for High-Dimensional Autonomous Systems, J. Math. Anal. Appl., 2010, vol. 363, no. 2, pp. 409–418.

    Article  MathSciNet  MATH  Google Scholar 

  33. Leonov, G.A., Burkin, I.M., and Shepelijavyi, A.I. Frequency Methods in Oscillation Theory, Kluwer Academic Publishers, 1996.

    Google Scholar 

  34. Gelig, A.Kh., Leonov, G.A., and Yakubovich, V.A., Ustoichivost’ nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya (Stability of Nonlinear Systems with a Nonunique Equilibrium), Moscow: Nauka, 1978.

    MATH  Google Scholar 

  35. An der Heiden, U., Existence of Periodic Solutions of a Nerve Equation, Biol. Cybern., 1976, vol. 21, no. 1, pp. 37–39.

    Article  MathSciNet  MATH  Google Scholar 

  36. Hastings, S., Tyson, J., and Webster, D., Existence of Periodic Solutions for Negative Feedback Cellular Control Systems, J. Differential Equations, 1977, vol. 25, no. 1, pp. 39–64.

    Article  MathSciNet  MATH  Google Scholar 

  37. Lorenz, E.N., Deterministic Non-Periodic Flow, J. Atmospheric Sci., 1963, vol. 20, pp. 130–141.

    Article  Google Scholar 

  38. Smale, S., Diffeomorphisms with Many Periodic Points, in Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton: Princeton Univ., 1965, pp. 63–80.

    Google Scholar 

  39. Matsumoto, T., A Chaotic Attractor from Chua’s Circuit, IEEE Trans. Circuits Systems, 1984, vol. 31, no. 12, pp. 1055–1058.

    Article  MATH  Google Scholar 

  40. Hirsch, M.W., Systems of Differential Equations Which Are Competitive or Cooperative. I. Limit Sets, SIAM J. Math. Anal., 1982, vol. 13, no. 2, pp. 167–179.

    Article  MathSciNet  MATH  Google Scholar 

  41. Hirsch, M.W., Systems of Differential Equations Which Are Competitive or Cooperative. II. Convergence Almost Everywhere, SIAM J. Math. Anal., 1982, vol. 16, no. 3, pp. 423–439.

    Article  Google Scholar 

  42. Hirsch, M.W., Systems of Differential EquationsWhich Are Competitive or Cooperative. III. Competing Species, Nonlinearity, 1982, vol. 1, no. 1, pp. 51–71.

    Google Scholar 

  43. Hirsch, M.W., Systems of Differential Equations Which Are Competitive or Cooperative. IV. Structural Stability in Three-Dimensional Systems, SIAM J. Math. Anal., 1990, vol. 21, no. 5, pp. 1225–1234.

    Article  MathSciNet  MATH  Google Scholar 

  44. Hirsch, M.W., Systems of Differential Equations Which Are Competitive or Cooperative. V. Convergence in 3-Dimensional Systems, J. Differential Equations, 1989, vol. 80, no. 1, pp. 94–106.

    Article  MathSciNet  MATH  Google Scholar 

  45. Hirsch, M.W., Systems of Differential Equations Which Are Competitive or Cooperative. VI. A Local Cr Closing Lemma for 3-Dimensional Systems, Ergodic Theory Dynam. Systems, 1991, vol. 11, no. 3, pp. 443–454.

    Article  MathSciNet  MATH  Google Scholar 

  46. Hirsch, M.W. and Smith, H., Monotone Dynamical Systems, in Handbook of Differential Equations: Ordinary Differential Equations. vol. II, Amsterdam: Elsevier, 2005, pp. 239–357.

    Google Scholar 

  47. Smith, H.I., Monotone Dynamical Systems, Providence: Amer. Math. Soc., 1995.

    Google Scholar 

  48. Hess, P., Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Note in Mathematics Series, vol. 247, Harlow: Longman Scientific & Technical, 1991.

  49. Angeli, D., de Leenheer, P., and Sontag, E.D., Graph-Theoretic Characterizations of Monotonicity of Chemical Networks in Reaction Coordinates, J. Math. Biol., 2010, vol. 61, no. 4, pp. 581–616.

    Article  MathSciNet  MATH  Google Scholar 

  50. Craciun, G., Pantea, C., and Sontag, E.D., Graph-Theoretic Analysis of Multistability and Monotonicity for Biochemical Reaction Networks, in Design and Analysis of Biomolecular Circuits, Springer-Verlag, 2011, pp. 63–72.

    Chapter  Google Scholar 

  51. Angeli, D. and Sontag, E.D., Behavior of Responses of Monotone and Sign-Definite Systems, in Mathematical Systems Theory, 2013, Create Space, pp. 51–64.

    Google Scholar 

  52. Angeli, D., Enciso, G.A., and Sontag, E.D., A Small-Gain Result for Orthant-Monotone Systems under Mixed Feedback, Systems Control Lett., 2014, vol. 68, pp. 9–19.

    Article  MathSciNet  MATH  Google Scholar 

  53. Ortega, R. and Sanchez, L.A., Abstract Competitive Systems and Orbital Stability in R3, Proc. Amer. Math. Soc., 2000, vol. 128, no. 10, pp. 2911–2919.

    Article  MathSciNet  MATH  Google Scholar 

  54. Burkin, I.M. and Leonov, G.A., Existence of Periodic Solutions to a Third-Order Nonlinear System, Differ. Uravn., 1984, vol. 20, no. 12, pp. 1430–1435.

    MathSciNet  MATH  Google Scholar 

  55. Burkin, I.M. and Soboleva, D.V., On the Structure of a Global Attractor of Multiply Connected Systems of Automatic Regulation, Izv. Tul. Gos. Univ. Ser. Estestv. Nauki, 2012, no. 1, pp. 5–16.

    Google Scholar 

  56. Burkin, I.M. and Burkina, L.I., Frequency Criterion for the Existence of Cycles in Multiply Connected Systems of Automatic Regulation, Vestn. Tul. Gos. Univ. Differ. Uravn. Prikl. Zad., 2010, no. 1, pp. 3–14.

    Google Scholar 

  57. Burkin, I.M. and Nguen, N.K., Analytical-Numerical Methods of Finding Hidden Oscillations in Multidimensional Dynamical Systems, Differ. Uravn., 2014, vol. 50, no. 13, pp. 1695–1717.

    Article  MathSciNet  MATH  Google Scholar 

  58. Shalfeev, V.D. and Matrosov, V.V., Nelineinaya dinamika sistem fazovoi sinkhronizatsii (Nonlinear Dynamics of Systems of Phase Synchronization), Nizhnii Novgorod: Izd. Nizhegorod. Univ., 2013.

    Google Scholar 

  59. Burkin, I.M., A Frequency Criterion for the Orbital Stability of Limit Cycles of the Second Kind, Differ. Uravn., 1993, vol. 29, no. 6, pp. 1061–1063.

    MathSciNet  MATH  Google Scholar 

  60. Burkin, I.M., Generalized Poincaré–Bendixson Principle for Dynamical Systems with Cylindrical State Space, Vestn. Tul. Gos. Univ. Differ. Uravn. Prikl. Zad., 2009, no. 1, pp. 3–20.

    Google Scholar 

  61. Leonov, G.A. and Smirnova, V.B., Matematicheskie problemy teorii fazovoi sinkhronizatsii (Mathematical Problems of the Theory of Phase Synchronization), St. Petersburg: Nauka, 2000.

    Google Scholar 

  62. Bobylev, N.A., Bulatov, A.V., Korovin, S.K., and Kutuzov, A.A., On a Scheme for Studying Cycles of Nonlinear Systems, Differ. Uravn., 1996, vol. 32, no. 1, pp. 3–8.

    MathSciNet  MATH  Google Scholar 

  63. Byrnes, C.I., Topological Methods for Nonlinear Oscillations, Notices Amer. Math. Soc., 2010, vol. 57, no. 9, pp. 1080–1091.

    MathSciNet  MATH  Google Scholar 

  64. Burkin, I.M., Burkina, L.I., and Leonov, G.A., Basbashin’s Problem in the Theory of Phase Systems, Differ. Uravn., 1981, vol. 17, no. 11, pp. 1932–1944.

    MathSciNet  Google Scholar 

  65. Burkin, I.M. and Soboleva, D.V., On Multidimensional Systems with Nonunique Cycle and Method of Harmonic Balance, Izv. Tul. Gos. Univ. Ser. Estestv. Nauki, 2011, no. 3, pp. 5–21.

    Google Scholar 

  66. Burkin, I.M., On the Structure of the Minimal Global Attractor of Multidimensional Systems with a Unique Equilibrium Position, Differ. Uravn., 1997, vol. 33, no. 3, pp. 418–420.

    MathSciNet  MATH  Google Scholar 

  67. Burkin, I.M., The Buffer Phenomenon in Multidimensional Dynamical Systems, Differ. Uravn., 2002, vol. 38, no. 5, pp. 585–595.

    MathSciNet  MATH  Google Scholar 

  68. Burkin, I.M. and Yakushin, O.A., On a Multidimensional Version of the Thirteenth Smale Problem, Vestn. Tul. Gos. Univ. Differ. Uravn. Prikl. Zad., 2004, no. 1, pp. 12–29.

    Google Scholar 

  69. Burkin, I.M. and Yakushin, O.A., Oscillations with Rigid Excitation and Buffer Phenomenon in Multidimensional Models of Regulated Systems, Vestn. Tul. Gos. Univ. Differ. Uravn. Prikl. Zad., 2005, no. 1, pp. 24–31.

    Google Scholar 

  70. Matveev, A.S. and Yakubovich, V.A., Optimal’nye sistemy upravleniya: Obyknovennye differentsial’nye uravneniya. Spetsial’nye zadachi (Optimal Control Systems: Ordinary Differential Equations. Special Problems), St. Petersburg: St. Petersburg Univ., 2003.

    Google Scholar 

  71. Voronov, A.A., Osnovy teorii avtomaticheskogo upravleniya. Osobye lineinye i nelineinye sistemy (Principles of Automated Control Theory. Special Linear and Nonlinear Systems), Moscow, 1981.

    Google Scholar 

  72. Leonov, G.A., A Conjecture of A. A. Voronov, Avtomat. i Telemekh., 1984, no. 5, pp. 17–20.

    Google Scholar 

  73. Leonov, G.A., Ponomarenko, D.V., and Smirnova, V.B., Local Instability and Localization of Attractors. From Stochastic Generator to Chua’s Systems, Acta Appl. Math., 1995, vol. 40, no. 3, pp. 179–243.

    Article  MathSciNet  MATH  Google Scholar 

  74. Burkin, I.M. and Burkina, L.I., On the Number of Cycles of Three-Dimensional System and the Sixteenth Hilbert Problem, Izv. Ross. Akad. Estestv. Nauk Differ. Uravn., 2001, no. 5, pp. 37–40.

    Google Scholar 

  75. Smale, S., A Mathematical Model of Two Cells via Turing’s Equation, in Bifurkatsiya rozhdeniya tsikla i ee prilozheniya (The Hopf Bifurcation and Its Applications), Moscow: Mir, 1980.

    Google Scholar 

  76. Burkin, I.M. and Soboleva D.V., On a Smale Problem, Differ. Uravn., 2011, vol. 47, no. 1, pp. 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  77. Leonov, G.A., Vagaitsev, V.I., and Kuznetsov, N.V., Algorithm for Localizing Chua Attractors Based on the Harmonic Linearization Method, Dokl. Mat., 2010, vol. 82, no. 1, pp. 663–666 (doi: 10.1134/S1064562410040411).

    Article  MathSciNet  MATH  Google Scholar 

  78. Leonov, G.A., Bragin, V.O., and Kuznetsov, N.V., Algorithm for Constructing Counterexamples to the Kalman Problem, Dokl. Mat., 2010, vol. 82, no. 1, pp. 540–542 (doi: 10.1134/S1064562410040101).

    Article  MATH  Google Scholar 

  79. Leonov, G.A. and Kuznetsov, N.V., Algorithms for Searching for Hidden Oscillations in the Aizerman and Kalman Problems, Dokl. Mat., 2011, vol. 8, no. 1, pp. 475–481 (doi: 10.1134/S1064562411040120).

    Article  MathSciNet  MATH  Google Scholar 

  80. Leonov, G.A. and Kuznetsov, N.V., Analytical-Numerical Methods for Investigation of Hidden Oscillations in Nonlinear Control Systems, IFAC Proc. Vol. (IFAC-PapersOnline), 2011, vol. 18, no. 1, pp. 2494–2505 (doi: 10.3182/20110828-6-IT-1002.03315).

    Google Scholar 

  81. Kuznetsov, N.V., Leonov, G.A., and Seledzhi, S.M., Hidden Oscillations in Nonlinear Control Systems, IFAC Proc. Vol. (IFAC-PapersOnline), 2011, vol. 18, no. 1, pp. 2506–2510 (doi: 10.3182/20110828-6-IT-1002.03316).

    Google Scholar 

  82. Bragin, V.O., Vagaitsev, V.I., Kuznetsov, N.V., and Leonov, G.A., Algorithms for Finding Hidden Oscillations in Nonlinear Systems: the Aizerman and Kalman Problems and Chua’s Circuits, J. Comput. System Sci. Int., 2011, vol. 50, no. 4, pp. 511–543.

    Article  MathSciNet  MATH  Google Scholar 

  83. Leonov, G.A., Kuznetsov, N.V., and Vagaitsev, V.I., Localization of Hidden Chua’s Attractors, Phys. Lett. A, 2011, vol. 375, no. 23, pp. 2230–2233.

    Article  MathSciNet  MATH  Google Scholar 

  84. Leonov, G.A., Kuznetsov, N.V., Kuznetsova, O.A., Seledzhi, S.M., and Vagaitsev, V.I., Hidden Oscillations in Dynamical Systems, Trans. Syst. Contr., 2011, no. 6, pp. 54–67.

    Google Scholar 

  85. Leonov, G.A., Kuznetsov, N.V., and Vagaitsev, V.I., Hidden Attractor in Smooth Chua Systems, Phys. D, 2012, vol. 241, no. 18, pp. 1482–1486 (doi: 10.1016/j.physd.2012.05.016).

    Article  MathSciNet  MATH  Google Scholar 

  86. Kuznetsov, N.V., Kuznetsova, O.A., Leonov, G.A., and Vagaitsev, V.I., Analytical-Numerical Localization of Hidden Attractor in Electrical Chua’s Circuit, Lecture Notes in Electrical Engineering, 2013, vol. 174, pp. 149–158.

    Article  MATH  Google Scholar 

  87. Leonov, G.A. and Kuznetsov, N.V., Hidden Attractors in Dynamical Systems: From Hidden Oscillation in Hilbert–Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2013, vol. 23, no. 1, art. num. 1330002.

    Google Scholar 

  88. Leonov, G.A. and Kuznetsov, N.V., Analytical-Numerical Methods for Hidden Attractors’ Localization: the 16th Hilbert Problem, Aizerman and Kalman Conjectures, and Chua Circuits, in Numerical Methods for Differential Equations, Optimization, and Technological Problems, Comput. Methods Appl. Sci., vol. 27, Dordrecht: Springer, 2013, pp. 41–64.

    Article  MathSciNet  MATH  Google Scholar 

  89. Andrievsky, B.R., Kuznetsov, N.V., Leonov, G.A., and Pogromsky, A.Yu., Hidden Oscillations in Aircraft Flight Control System with Input Saturation, IFAC Proc. Vol. (IFAC-PapersOnline), 2013, vol. 5, no. 1, pp. 75–79 (doi: 10.3182/20110703-3-FR-4039.00026).

    Google Scholar 

  90. Andrievsky, B.R., Kuznetsov, N.V., Leonov, G.A., and Seledzhi, S.M., Hidden Oscillations in Stabilization System of Flexible Launcher with Saturating Actuators, IFAC Proc. Vol. (IFAC-PapersOnline), 2013, vol. 19, no. 1, pp. 37–41 (doi: 10.3182/20130902-5-DE-2040.00040).

    Google Scholar 

  91. Chua, L.O., A Zoo of Strange Attractors from the Canonical Chua’s Circuits, Proc. of the IEEE 35th Midwest Symp. on Circuits and Systems (cat.no. 92CH3099-9), Washington, 1992, vol. 2, pp. 916–926.

    Article  Google Scholar 

  92. Jafari, S., Sprott, J.C., and Golpayegani, S.M.R.H., Elementary Quadratic Chaotic Flows with No Equilibria, Phys. Lett. A, 2013, vol. 377, no. 9, pp. 699–702.

    Article  MathSciNet  Google Scholar 

  93. Molaie, M., Jafari, S., Sprott, J.C., and Golpayegani, S.M.R.H., Simple Chaotic Flows with One Stable Equilibrium, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2013, vol. 23, no. 11, art.num.1350188.

    Google Scholar 

  94. Wang, X. and Chen, G., A Chaotic System with Only One Stable Equilibrium, Commun. Nonlinear Sci. Numer. Simul., 2012, vol. 17, no. 3, pp. 1264–1272.

    Article  MathSciNet  Google Scholar 

  95. Wei, Z., Dynamical Behaviors of a Chaotic System with No Equilibria, Phys. Lett. A, 2011, vol. 376, pp. 102–108.

    Article  MathSciNet  MATH  Google Scholar 

  96. Wei, Z., Delayed Feedback on the 3D Chaotic System Only with Two Stable Node-Foci, Comput. Math. Appl., 2012, vol. 63, no. 3, pp. 728–738.

    Article  MathSciNet  MATH  Google Scholar 

  97. Wang, X. and Chen, G., Constructing a Chaotic System with Any Number of Equilibria, Nonlinear Dynam., 2013, vol. 71, pp. 429–436.

    Article  MathSciNet  Google Scholar 

  98. Lao, S.-K., Shekofteh, Y., Safari, E., and Sprott, J.C., Cost Function Based on Gaussian Mixture Model for Parameter Estimation of a Chaotic Circuit with a Hidden Attractor, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2014, vol. 24, no. 1, art. num. 1450010.

    Google Scholar 

  99. Pham, V.-T., Rahma, F., Frasca, M., and Fortuna, L., Dynamics and Synchronization of a Novel Hyperchaotic System without Equilibrium, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2014, vol. 24, no. 6, art. num. 1450087.

    Google Scholar 

  100. Zhao, H., Lin, Y., and Dai, Y., Hidden Attractors and Dynamics of a General Autonomous van der Pol–Duffing Oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2014, vol. 24, no. 6, art. num. 1450080.

    Google Scholar 

  101. Li, Q., Zeng, H., and Yang, X.-S., On Hidden Twin Attractors and Bifurcation in the Chua’s Circuit, Nonlinear Dynam., 2014, vol. 77, no. 1–2, pp. 255–266.

    Article  MathSciNet  Google Scholar 

  102. Burkin, I.M. and Nguen, Ngok Khien, On the Structure of the Minimal Global Attractor of Lienard Generalized System with Polynomial Nonlinearity, Izv. Tul. Gos. Univ. Ser. Estestv. Nauki, 2014, no. 2, pp. 46–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Burkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkin, I.M. Method of “transition into space of derivatives”: 40 years of evolution. Diff Equat 51, 1717–1751 (2015). https://doi.org/10.1134/S0012266115130054

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266115130054

Keywords

Navigation