Skip to main content
Log in

Nonlinear dynamic analysis and numerical continuation of periodic orbits in high-index differential–algebraic equation systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a novel methodology for nonlinear dynamic analysis of chemical processes that are posed as differential–algebraic equations (DAE) systems. With the proposed approach, for the first time, high-index systems, which are often the result of computer-aided modeling, can be treated “as is,” i.e., without the need for model reformulation in order to fit in particular structures (such as the Hessenberg forms) or a preconditioning procedure such as index reduction. This is a desirable feature because special forms cannot always be achieved, and reduced-index systems may present a different behavior than the original one due to the well-known drift-off effect or even result in misleading stability conclusions. The main problems addressed here are the direct computation of Hopf bifurcation points and the stability analysis and numerical continuation of steady-state and periodic solutions. The developed algorithms were packed together in ContiNum, a MATLAB toolbox with free distribution. In order to illustrate the methodology, an example of a high-index system is discussed in detail, including the analysis of its low-index counterpart, showing that bifurcation diagrams can be accurately built without index reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

Not applicable

Notes

  1. https://github.com/asanet/continum

  2. It is also known as the transversality condition [1].

  3. For simplicity, the equilibrium constant \( (K_\text {eq}) \) is assumed to be invariant with temperature \( (x_3) \).

  4. The selection of the pair \( ({\varvec{\mathrm {x}}}_1, D_a) \) was made because it is the classic choice for this kind of problem (\( x_1 \) is the concentration of reactant A, which measures the reaction extent, and \( D_a \) is the Damköhler number, which is a measure of the relative importance of chemical reaction against the forced flow).

References

  1. Doedel, E.: ON THE NUMERICAL ANALYSIS OF DYNAMICAL SYSTEMS, In: Systems Approaches in Computer Science and Mathematics, ed. by G.E. LASKER (Pergamon, 1981), pp. 2662 – 2666. https://doi.org/10.1016/B978-0-08-027202-3.50107-3

  2. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1996)

    MATH  Google Scholar 

  3. Gonzalez, O.: Physica D: Mechanical systems subject to holonomic constraints: Differential-algebraic formulations and conservative integration. Nonlinear Phenomena 132(1), 165 (1999)

    Article  MathSciNet  Google Scholar 

  4. Riaza, R.: Differential-Algebraic Systems: Analytical Aspects and Circuit Applications, Differential-Algebraic Systems: Analytical Aspects and Circuit Applications. World Scientific Publishing Company, Madrid, Spain (2008)

    Book  Google Scholar 

  5. Garcia, M., Chatterjee, A., Ruina, A.C.M.: The simplest walking model: stability, complexity, and scaling. J. Biomech. Eng. 120(2), 281 (1998). https://doi.org/10.1115/1.2798313

    Article  Google Scholar 

  6. Vaninsky, A.: Differential-algebraic equations of the multicriteria locally optimal trajectory of economic restructuring. Int. J. Dynam. Control 6, 1767 (2018). https://doi.org/10.1007/s40435-018-0419-x

    Article  MathSciNet  Google Scholar 

  7. Soares, R.P., Secchi, A.R.: Structural analysis for static and dynamic models. Math. Comput. Modell. 55(3), 1051 (2012). https://doi.org/10.1016/j.mcm.2011.09.030

    Article  Google Scholar 

  8. Ascher, U., Petzold, L.: Projected implicit Runge-Kutta methods for differential-algebraic equations. Siam J. Num. Anal. - SIAM J NUMER ANAL (1991). https://doi.org/10.1137/0728059

    Article  MATH  Google Scholar 

  9. Bachmann, R., Brüll, L., Mrziglod, T., Pallaske, U.: On methods for reducing the index of differential algebraic equations. Comput. Chem. Eng. 14(11), 1271 (1990). https://doi.org/10.1016/0098-1354(90)80007-X

    Article  Google Scholar 

  10. März, R.: Managing the drift-off in numerical index-2 differential algebraic equations by projected defect corrections (Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik, 2005). https://doi.org/10.18452/2564

  11. Hedengren, J.D., Shishavan, R.A., Powell, K.M., Edgar, T.F.: Nonlinear modeling, estimation and predictive control in APMonitor’. Comput. Chem. Eng. 70, 133 (2014)

    Article  Google Scholar 

  12. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S.: SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. (TOMS) 31(3), 363 (2005). https://doi.org/10.1145/1089014.1089020

    Article  MathSciNet  MATH  Google Scholar 

  13. Secchi, A.R.: Dasslc user’s manual. Tech. rep., UFRGS, Porto Alegre, RS. Brazil (2007)

  14. Harney, D., Mills, T., Book, N.: Numerical evaluation of the stability of stationary points of index-2 differential-algebraic equations: Applications to reactive flash and reactive distillation systems. Comput. Chem. Eng. 49, 61 (2013). https://doi.org/10.1016/j.compchemeng.2012.09.021

    Article  Google Scholar 

  15. Seydel, R.: Practical bifurcation and stability analysis: from equilibrium to chaos, 2nd edn. Springer, New York, NY (1994)

    MATH  Google Scholar 

  16. Raza, A., Fatima, U., Rafiq, M., Ahmed, N., Khan, I., Nisar, K.S., Iqbal, Z.: Mathematical analysis and design of the nonstandard computational method for an epidemic model of computer virus with delay Effect: Application of mathematical biology in computer science. Results in Phys. 21, 103750 (2021). https://doi.org/10.1016/j.rinp.2020.103750

    Article  Google Scholar 

  17. Shatanawi, W., Arif, M.S., Raza, A., Rafiq, M., Bibi, M., Abbasi, J.N.: Structure-preserving dynamics of stochastic epidemic model with the saturated incidence rate. Comput. Mater. Continua 64(2), 797 (2020)

    Article  Google Scholar 

  18. Naveed, M., Baleanu, D., Rafiq, M., Raza, A., Soori, A.H., Ahmed, N.: Dynamical behavior and sensitivity analysis of a delayed coronavirus epidemic model. Comput. Mater. Continua 65(1), 225 (2020)

    Article  Google Scholar 

  19. Gear, C.W.: Simultaneous numerical solution of differential-algebraic equations. IEEE Trans. Circuit Theory 18(1), 89 (1971). https://doi.org/10.1109/TCT.1971.1083221

    Article  Google Scholar 

  20. Campbell, S.L., Griepentrog, E.: Solvability of general differential algebraic equations. SIAM J. Sci. Comput. 16(2), 257 (1995). https://doi.org/10.1137/0916017

    Article  MathSciNet  MATH  Google Scholar 

  21. Griepentrog, E., März, R.: Differential-algebraic Equations and Their Numerical Treatment. Teubner-Texte zur Mathematik (Teubner, 1986). https://books.google.com.br/books?id=Dw6oAAAAIAAJ

  22. Gear, C.W.: Differential-algebraic equation index transformations. SIAM J. Sci. Stat. Comput. 9(1), 39 (1988). https://doi.org/10.1137/0909004

    Article  MathSciNet  MATH  Google Scholar 

  23. Pantelides, C.C.: The consistent initialization of differential-algebraic systems. SIAM J. Sci. Stat. Comput. 9(2), 213 (1988). https://doi.org/10.1137/0909014

    Article  MathSciNet  MATH  Google Scholar 

  24. Soares, R.P., Secchi, A.R.: Direct initialisation and solution of high-index DAE systems (Elsevier. Comput. Aided Chem. Eng. 20, 157–162 (2005). https://doi.org/10.1016/S1570-7946(05)80148-8

    Article  Google Scholar 

  25. März, R.: Practical Lyapunov stability criteria for differential algebraic equations. Banach Center Publ. 29, 245 (1994). https://doi.org/10.4064/-29-1-245-266

    Article  MathSciNet  MATH  Google Scholar 

  26. Reich, S.: On the local qualitative behavior of differential-algebraic equations. Circuits Syst. Sig. Process. 14(4), 427 (1995). https://doi.org/10.1007/BF01260330

    Article  MathSciNet  MATH  Google Scholar 

  27. Campbell, S.L.: Linearization of DAEs along trajectories, Zeitschrift für angewandte Mathematik und Physik. ZAMP 46(1), 70 (1995). https://doi.org/10.1007/BF00952257

    Article  MathSciNet  Google Scholar 

  28. Clausbruch, B.C., Biscaia, E.C., Melo, P.A.: Stability analysis of differential-algebraic equations in AUTO_DAE (Elsevier. Comput. Aided Chem. Eng. 21, 297–302 (2006). https://doi.org/10.1016/S1570-7946(06)80062-3

    Article  Google Scholar 

  29. Kienle, A., Lauschke, G., Gehrke, V., Gilles, E.: On the dynamics of the circulation loop reactor-numerical methods and analysis. Chem. Eng. Sci. 50(15), 2361 (1995). https://doi.org/10.1016/0009-2509(95)00112-I

    Article  Google Scholar 

  30. Rabier, P.J.: The Hopf bifurcation theorem for quasilinear differential-algebraic equations. Comput. Methods Appl. Mech. Eng. 170(3), 355 (1999). https://doi.org/10.1016/S0045-7825(98)00203-5

    Article  MathSciNet  MATH  Google Scholar 

  31. Andrade Neto, A.S., Secchi, A.R., Melo, P.A.: Direct computation of Hopf bifurcation points in differential-algebraic equations. Comput. Chem. Eng. 121, 639 (2019)

    Article  Google Scholar 

  32. Lamour, R., März, R.: Detecting structures in differential algebraic equations: computational aspects. J. Comput. Appl. Math. 236(16), 4055 (2012). https://doi.org/10.1016/j.cam.2012.03.009

    Article  MathSciNet  MATH  Google Scholar 

  33. Griewank, A., Reddien, G.: The calculation of hopf points by a direct method. IMA J. Numer. Anal. 3(3), 295 (1983). https://doi.org/10.1093/imanum/3.3.295

    Article  MathSciNet  MATH  Google Scholar 

  34. Dickson, K.I., Kelley, C.T., Ipsen, I.C.F., Kevrekidis, I.G.: Condition estimates for pseudo-arclength continuation (2006)

  35. Lamour, R., März, R., Winkler, R.: How floquet theory applies to index 1 differential algebraic equations. J. Math. Anal. Appl. 217(2), 372 (1998). https://doi.org/10.1006/jmaa.1997.5714

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This study was financed in part by the Coordination for the Improvement of Higher Education Personnel (CAPES), Finance Code 001, and the National Council for Scientific and Technological Development (CNPq), Grant Numbers 302893/2013-0 and 152572/2016-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ataíde S. Andrade Neto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

All the developed software applications are available at https://github.com/asanet/continum

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This study was financed in part by the Coordination for the Improvement of Higher Education Personnel (CAPES), Finance Code 001, and the National Council for Scientific and Technological Development (CNPq), Grant Numbers 302893/2013-0 and 152572/2016-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade Neto, A.S., Secchi, A.R. & Melo, P.A. Nonlinear dynamic analysis and numerical continuation of periodic orbits in high-index differential–algebraic equation systems. Nonlinear Dyn 108, 1495–1507 (2022). https://doi.org/10.1007/s11071-022-07254-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07254-4

Keywords

Navigation