Skip to main content
Log in

Subterahertz Astronomy in the Russian Federation: Prospects and Directions

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

This paper addresses the scientific and technical prospects and potential directions for the development of subterahertz astronomy in the Russian Federation. The concept of creating subterahertz instruments in the form of a universal compact antenna array for placement on the territory of the Russian Federation is proposed. It is possible to implement several space projects in the subterahertz range using such an antenna array, including a space interferometer and a telescope on the surface of the Moon. Ground-based compact antenna arrays will be able to act as a support for the very long baseline interferometer mode of the Millimetron observatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Notes

  1. In English-language literature, the generally accepted term is “dusty star forming galaxies.”

  2. SOFIA observatory: https://www.sofia.usra.edu/.

  3. BLAST experiment: https://sites.northwestern.edu/blast/.

  4. https://cdms.astro.uni-koeln.de/cgi-bin/cdmssearch.

  5. In the English-language literature, this class of problems is known as the “water trail problem.”

  6. https://www.cfa.harvard.edu/spaces/greenland-telescope.

  7. https://www.cfa.harvard.edu/facilities-technology/telescopes-instruments/south-pole-telescope-antarctica.

  8. https://iaaras.ru/quasar/rt-13/antenna/.

  9. http://www.cnsa.gov.cn/english/n6465652/n6465653/c6812150/ content.html.

REFERENCES

  1. Catalano, A., Adam, R., Ade, P.A.R., et al., The NIK-A2 instrument at 30-m IRAM telescope: Performance and results, J. Low Temp. Physics, 2018, vol. 193, nos. 5–6, pp. 916–922. https://doi.org/10.3847/1538-4357/ac61df

    Article  ADS  CAS  Google Scholar 

  2. Pilbratt, G., Griffin, M., Barthel, P., et al., The Herschel Space Observatory development, operation and post-operations: Lessons learned, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2020, vol. 11443, p. 1144309. https://doi.org/10.1117/12.2561116

    Article  Google Scholar 

  3. Diaz-Garcia, S., Lisenfeld, U., Perez, I., et al., Molecular gas and star formation within 12 strong galactic bars observed with IRAM-30 m, Astron. Astrophys., 2021, vol. 654, p. A135. https://doi.org/10.1051/0004-6361/202140674

    Article  CAS  Google Scholar 

  4. Franceschi, R., Birnstiel, T., Henning, T., et al., Mass determination of protoplanetary disks from dust evolution, Astron. Astrophys., 2022, vol. 657, p. A74. https://doi.org/10.1051/0004-6361/202141705

    Article  Google Scholar 

  5. Chen, С.-C., Liao, C.-L., Smail, I., et al., An ALMA spectroscopic survey of the brightest submillimeter galaxies in the SCUBA-2-COSMOS field (AS2COSPEC): Survey description and first results, Astrophys. J., 2022, vol. 929, no. 2, p. 159. https://doi.org/10.3847/1538-4357/ac61df

  6. Trinca, A., Schneider, R., Maiolino, R., et al., Seeking the growth of the first black hole seeds with JWST, arXiv e-prints, 2022, arXiv:2211.01389.

  7. Akiyama, K., Alberdi, A., Alef, W., et al., Event Horizon Telescope collaboration: First M87 Event Horizon Telescope results. I. The shadow of the supermassive black hole, Astrophys. J. Lett., 2019, vol. 875, no. 1, p. L1. https://doi.org/10.3847/2041-8213/ab0ec7

    Article  ADS  Google Scholar 

  8. Event Horizon Telescope Collaboration, et al., First Sagittarius A* Event Horizon Telescope results. I. The shadow of the supermassive black hole in the center of the Milky Way, Astrophys. J. Lett., 2022, vol. 930, no. 2, p. L12. https://doi.org/10.3847/2041-8213/ac6674

    Article  ADS  Google Scholar 

  9. Hong, X., Shen, Z., An, T., et al., The Chinese space millimeter-wavelength VLBI array—a step toward imaging the most compact astronomical objects, Acta Astronaut., 2014, vol. 102, pp. 217–225. https://doi.org/10.1016/j.actaastro.2014.05.026

    Article  ADS  Google Scholar 

  10. Palumbo, D., Johnson, M., Doeleman, S., et al., Next-generation event horizon telescope developments: New stations for enhanced imaging, Am. Astron. Soc. Meet. Abstr., 2018, vol. 231, p. 347.21.

  11. Kudriashov, V., Martin-Neira, M., Barat, I., et al., System design for the Event Horizon imaging experiment using the PECMEO concept, Chin. J. Space Sci., 2019, vol. 39, no. 2, p. 250. https://doi.org/10.11728/cjss2019.02.250

    Article  ADS  Google Scholar 

  12. Raymond, A.W., Palumbo, D., Paine, S.N., et al., Evaluation of new submillimeter VLBI sites for the Event Horizon Telescope, Astrophys. J. Suppl., 2021, vol. 253, no. 1. https://doi.org/10.3847/1538-3881/abc3c3

  13. Gurvits, L.I., Paragi, Z., Casasola, V., et al., THEZA: TeraHertz Exploration and Zooming-in for Astrophysics, Exp. Astron., 2021, vol. 51, no. 3, pp. 559–594. https://doi.org/10.1007/s10686-021-09714-y

    Article  ADS  Google Scholar 

  14. Gurvits, L.I., Paragi, Z., Amils, R.I., et al., The science case and challenges of space-borne sub-millimeter interferometry, Acta Astronaut., 2022, vol. 196, pp. 314–333. https://doi.org/10.1016/j.actaastro.2022.04.020

    Article  ADS  Google Scholar 

  15. Kardashev, N.S., Novikov, I.D., Lukash, V.N., et al., Review of scientific topics for the Millimetron space observatory, Phys. Usp., 2014, vol. 57, no. 12, pp. 1199–1228. https://doi.org/10.3367/UFNe.0184.201412c.1319

    Article  ADS  Google Scholar 

  16. Novikov, I.D., Likhachev, S.F., Shchekinov, Yu.A., et al., Objectives of the Millimetron Space Observatory science program and technical capabilities of its realization, Phys. Usp., 2021, vol. 64, no. 4, pp. 386–419. https://doi.org/10.3367/UFNe.2020.12.038898

    Article  ADS  CAS  Google Scholar 

  17. Artemenko, Yu.N., Balega, Yu.Yu., Baryshev, A.M., et al., New stage of the Suffa submm observatory in Uzbekistan project, Proc. ISSTT 2019—30th Intern. Symp. Space Terahertz Technology, 2019, pp. 196–201.

  18. Bubnov, G., Vdovin, V., Khaikin, V., et al., Analysis of variations in factors of specific absorption of sub-terahertz waves in the Earth’s atmosphere, 7th All-Russian Microwave Conf. (RMC), 2020, pp. 229–232. https://doi.org/10.1109/RMC50626.2020.9312314

  19. Balega, Yu., Bubnov, G., Glyavin, M., et al., Atmospheric propagation studies and development of new instrumentation for astronomy, radar, and telecommunication applications in the subterahertz frequency range, Appl. Sci., 2022, vol. 12, no. 11, p. 5670. https://doi.org/10.3390/app12115670

    Article  CAS  Google Scholar 

  20. Abramovici, A., Althouse, W.E., Drever, R.W.P., et al., LIGO: The Laser Interferometer Gravitational Wave Observatory, Science, 1992, vol. 256, no. 5055, pp. 325–333. https://doi.org/10.1126/science.256.5055.325

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Caron, B., Dominjon, A., Drezen, C., et al., The Virgo interferometer, Classical and Quantum Gravity, 1997, vol. 14, no. 6, pp. 1461–1469. https://doi.org/10.1088/0264-9381/14/6/011

    Article  ADS  CAS  Google Scholar 

  22. Danzmann, K. and LISA Study Team, LISA—an ESA cornerstone mission for a gravitational wave observatory, Classical and Quantum Gravity, 1997, vol. 14, no. 6, pp. 1399–1404. https://doi.org/10.1088/0264-9381/14/6/002

    Article  ADS  CAS  Google Scholar 

  23. Akiyama, K., Alberdi, A., Alef, W., et al., First M87 Event Horizon Telescope results. II. Array and instrumentation, Astrophysical J. Lett., 2019, vol. 875, no. 1, p. L2. https://doi.org/10.3847/2041-8213/ab0c96

    Article  ADS  Google Scholar 

  24. Andrianov, A., Chernov, S., Girin, I., et al., Flares and their echoes can help distinguish photon rings from black holes with space–Earth very long baseline interferometry, Phys. Rev. D: Part. Fields, 2022, vol. 105, no. 6, p. 063015. https://doi.org/10.1103/PhysRevD.105.063015

    Article  ADS  CAS  Google Scholar 

  25. Tiede, P., Johnson, M.D., Pesce, D.W., et al., Measuring photon rings with the ngEHT, arXiv e-prints, 2022, arXiv:2210.13498.

  26. Mortlock, D.J., Warren, S.J., Venemans, B.P., et al., A luminous quasar at a redshift of z = 7.085, Nature, 2011, vol. 474, no. 7353, pp. 616–619. https://doi.org/10.1038/nature10159

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Banados, E., Venemans, B.P., Mazzucchelli, C., et al., An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5, Nature, 2018, vol. 553, no. 7689, pp. 473–476. https://doi.org/10.1038/nature25180

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Volonteri, M., The formation and evolution of massive black holes, Science, 2012, vol. 337, no. 6094, p. 544. https://doi.org/10.1126/science.1220843

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Tal, A. and Priyamvada, N., Rapid growth of seed black holes in the early universe by supra-exponential accretion, Science, 2014, vol. 345, no. 6202, pp. 1330–1333. https://doi.org/10.1126/science.1251053

    Article  CAS  Google Scholar 

  30. Woods, T.E., Agarwal, B., Bromm, V., et al., Titans of the early Universe: The Prato statement on the origin of the first supermassive black holes, Publ. Astron. Soc. Australia, 2019, vol. 36, p. e027. https://doi.org/10.1017/pasa.2019.14

    Article  ADS  Google Scholar 

  31. Hickox, R.C. and Alexander, D.M., Obscured active galactic nuclei, Ann. Rev. Astron. Astrophys., 2018, vol. 56, pp. 625–671. https://doi.org/10.1146/annurev-astro-081817-051803

    Article  ADS  CAS  Google Scholar 

  32. Spinoglio, L., Alonso-Herrero, A., Armus, L., et al., Galaxy evolution studies with the SPace IR Telescope for Cosmology and Astrophysics (SPICA): The power of IR spectroscopy, Publ. Astron. Soc. Australia, 2017, vol. 34, p. e057. https://doi.org/10.1017/pasa.2017.48

    Article  ADS  Google Scholar 

  33. Humphreys, E.M.L., Vlemmings, W.H.T., Impellizzeri, C.M.V., et al., Detection of 183 GHz H2O megamaser emission towards NGC 4945, Astron. Astrophys., 2016, vol. 592, p. L13. https://doi.org/10.1051/0004-6361/201629168

    Article  ADS  CAS  Google Scholar 

  34. Hagiwara, Y., Horiuchi, S., Doi, A., et al., A search for submillimeter H2O masers in active galaxies: The detection of 321 GHz H2O maser emission in NGC 4945, Astrophys. J., 2016, vol. 827, no. 1, p. 69. https://doi.org/10.3847/0004-637X/827/1/69

    Article  ADS  Google Scholar 

  35. Researchers Use NRAO Telescope to Study Formation of Chemical Precursors to Life, National Radio Astronomy Observatory Press Release, August 2006. https://www.nrao.edu/pr/2006/gbtmolecules.

  36. McGuire, B.A., Loomis, R.A., Burkhardt, A.M., et al., Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering, Science, 2021, vol. 371, no. 6535, pp. 1265–1269. https://doi.org/10.1126/science.abb7535

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Plavin, A.V., Kovalev, Y.Y., Kovalev, Yu.A., et al., Directional association of TeV to PeV astrophysical neutrinos with radio blazars, Astrophys. J., 2021, vol. 908, no. 2, p. 157. https://doi.org/10.3847/1538-4357/abceb8

    Article  ADS  CAS  Google Scholar 

  38. Abbott, B.P., Abbott, R., Abbott, T.D., et al., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817a, Astrophys. J. Lett., 2017, vol. 848, no. 2.

  39. Cogdell, J.R., McCue, J.J.G., Kalachev, P.D., et al., High-resolution millimeter reflector antennas, IEEE Transactions on Antennas and Propagation, 1970, vol. 18, pp. 515–529. https://doi.org/10.1109/TAP.1970.1139725

    Article  ADS  Google Scholar 

  40. Antyufeev, A.V., Zubrin, S.Yu., Myshenko, V.V., et al., Parameters of the RT-22 Radio Telescope (CrAO) at 3.42 mm, Radiofiz. Radioastron., 2009, vol. 14, no. 4, pp. 345–352.

    ADS  Google Scholar 

  41. Balega, Yu.Yu., Bataev, D.K., Bubnov, G.M., et al., Direct measurements of atmospheric absorption of subterahertz waves in the Northern Caucasus, Phys.-Dokl., 2022, vol. 67, no. 1, pp. 1–4. https://doi.org/10.1134/S1028335822010013

    Article  ADS  CAS  Google Scholar 

  42. Liebe, H.J., Rosenkranz, P.W., and Hufford, G.A., Atmospheric 60-GHz oxygen spectrum—new laboratory measurements and line parameters, J. Quant. Spectrosc. Radiat. Transfer, 1992, vol. 48, nos. 5–6, pp. 629–643. https://doi.org/10.1016/0022-4073(92)90127-P

    Article  ADS  CAS  Google Scholar 

  43. Paiella, A., Ade, P.A.R., Battistelli, E.S., et al., In-flight performance of the LEKIDs of the OLIMPO experiment, J. Low Temp. Phys., 2020, vol. 199, nos. 1–2, pp. 491–501. https://doi.org/10.1007/s10909-020-02372-y

    Article  ADS  CAS  Google Scholar 

  44. Rioja, M.J., Dodson, R., and Asaki, Y., The transformational power of frequency phase transfer methods for ngEHT, Galaxies, 2023, vol. 11, no. 1, p. 16. https://doi.org/10.3390/galaxies11010016

    Article  ADS  Google Scholar 

  45. Mimoun, D., Wieczorek, M.A., Alkalai, L., et al., Farside explorer: Unique science from a mission to the farside of the Moon, Exp. Astron., 2012, vol. 33, nos. 2–3, pp. 529–585. https://doi.org/10.1007/s10686-011-9252-3

    Article  ADS  Google Scholar 

  46. Zarka, P., Bougeret, J.-L., Briand, C., et al., Planetary and exoplanetary low frequency radio observations from the Moon, Planet. Space Sci., 2012, vol. 74, no. 1, pp. 156–166. https://doi.org/10.1016/j.pss.2012.08.004

    Article  ADS  Google Scholar 

  47. Sachkov, M., Shugarov, A., Schmagin, V., et al., The concept of lunar-based astrophysical telescope for International Lunar Research Station (ILRS), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2022, vol. 12181, p. 121812V. https://doi.org/10.1117/12.2629619

    Article  Google Scholar 

  48. Jester, S. and Falcke, H., Science with a lunar low-frequency array: from the dark ages of the universe to nearby exoplanets, New Astron. Rev., 2009, vol. 53, nos. 1–3, pp. 1–26. https://doi.org/10.1016/j.newar.2009.02.001

    Article  ADS  CAS  Google Scholar 

  49. Lazio, J., Carilli, C., Hewitt, J., et al., The Lunar Radio Array (LRA), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts IV, 2009, vol. 7436, p. 74360I. https://doi.org/10.1117/12.827955

    Article  Google Scholar 

  50. Wolt, M.K., Aminaei, A., Zarka, P., et al., Radio astronomy with the European Lunar Lander: opening up the last unexplored frequency regime, Planet. Space Sci., 2012, vol. 74, no. 1, pp. 167–178. https://doi.org/10.1016/j.pss.2012.09.004

    Article  ADS  Google Scholar 

  51. Gafarov, A.A. and Dolgunichev, K.D., Ensuring radiation safety of space radioisotope generators, Vestn. NPO im. S.A. Lavochkina, 2016, vol. 32, no. 2, pp. 78–84.

    Google Scholar 

  52. Martin-Neira, M., Li, W., Andres-Beivide, A., et al., “Cookie”: A satellite concept for GNSS remote sensing constellations, IEEE J. Selected Topics App. Earth Obs. Remote Sens., 2016, vol. 9, no. 10, pp. 4593–4610. https://doi.org/10.1109/JSTARS.2016.2585620

    Article  ADS  Google Scholar 

  53. Kudriashov, V., Falcke, H., Gurvits, L., et al., System design progress in the event horizon imaging using the concept of space-to-space VLBI from medium Earth orbits, Proc. 42nd COSPAR Scientific Assembly, 2018, vol. 42, p. E1.8-17-18.

  54. Kudriashov, V., Martin-Neira, M., Barat, I., et al., System design for the Event Horizon imaging experiment using the PECMEO concept, Chin. J. Space Sci., 2019, vol. 39, no. 2, pp. 250–266. https://doi.org/10.11728/cjss2019.02.250

    Article  ADS  Google Scholar 

  55. Roelofs, F., Falcke, H., Brinkerink, C., et al., Simulations of imaging the event horizon of Sagittarius A* from space, Astron. Astrophys., 2019, vol. 625, p. A124. https://doi.org/10.1051/0004-6361/201732423

    Article  Google Scholar 

  56. Kudriashov, V., Martin-Neira, M., and Roelofs, F., Event Horizon Imager (EHI) mission concept utilizing medium Earth orbit sub-mm interferometry, Chin. J. Space Sci., 2021, vol. 41, no. 2, pp. 211–233. https://doi.org/10.11728/cjss2021.02.211

    Article  ADS  Google Scholar 

  57. Gurvits, L.I., Paragi, Z., Casasola, V., et al., THEZA: TeraHertz Exploration and Zooming-in for Astrophysics, Exp. Astron., 2021, vol. 51, no. 3, pp. 559–594. https://doi.org/10.1007/s10686-021-09714-y

    Article  ADS  Google Scholar 

  58. Likhachev, S.F., Rudnitskiy, A.G., Shchurov, M.A., et al., High-resolution imaging of a black hole shadow with Millimetron orbit around Lagrange point L2, Mon. Not. R. Astron. Soc., 2022, vol. 511, pp. 668–682. https://doi.org/10.1093/mnras/stac079

    Article  ADS  Google Scholar 

  59. Golubev, E.S., Kotsur, E.K., Arkhipov, M.Yu., et al., Primary mirror panels of the Millimetron Space Observatory, Proc. SPIE. Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation IV, 2020, vol. 11451, p. 114510K. https://doi.org/10.1117/12.2562838

  60. Yusov, A.V., Kozlov, S.A., Ustinova, E.A., et al., Testing high-precision electromechanical actuators used for adjustment of deployable antennas of astronomy space missions, Cryogenics, 2021, vol. 118, p. 103346. https://doi.org/10.1016/j.cryogenics.2021.103346

    Article  CAS  Google Scholar 

  61. Demidov, N.A., Belyaev, A.A., Polyakov, V.A., et al., Onboard hydrogen frequency standard for the Millimetron Space Observatory, Meas. Tech., 2018, vol. 61, pp. 791–796. https://doi.org/10.1007/s11018-018-1503-5

    Article  Google Scholar 

  62. de Graauw, T., Helmich, F.P., Phillips, T.G., et al., The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI), Astron. Astrophys., 2010, vol. 518, p. L6. https://doi.org/10.1051/0004-6361/201014698

    Article  ADS  CAS  Google Scholar 

  63. Tucker, J.R. and Feldman, M.J., Quantum detection at millimeter wavelengths, Rev. Mod. Phys., 1985, vol. 57, no. 4, pp. 1055–1113. https://doi.org/10.1103/RevModPhys.57.1055

    Article  ADS  CAS  Google Scholar 

  64. Goltsman, G.N., Semenov, A.D., Gousev, Y.P., et al., Sensitive picosecond NbN detector for radiation from millimeter wavelengths to visible light, Supercond. Sci. Technol., 1991, vol. 4, no. 9, p. 453. https://doi.org/10.1088/0953-2048/4/9/020

    Article  ADS  CAS  Google Scholar 

  65. Wootten, A. and Thompson, R.A., The Atacama Large Millimeter/Submillimeter Array, Proc. IEEE, 2009, vol. 97, no. 8, pp. 1463–1471. https://doi.org/10.1109/JPROC.2009.2020572

    Article  ADS  Google Scholar 

  66. Chenu, J.-Y., Navarrini, A., Bortolotti, Y., et al., The front-end of the NOEMA interferometer, IEEE Transactions on Terahertz Science and Technology, 2016, vol. 6, no. 2, pp. 223–237. https://doi.org/10.1109/TTHZ.2016.2525762

    Article  ADS  Google Scholar 

  67. de Lange, G., Birk, M., Boersma, D., et al., Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder, Supercond. Sci. Technol., 2010, vol. 23, no. 4, p. 045016. https://doi.org/10.1088/0953-2048/23/4/045016

    Article  ADS  CAS  Google Scholar 

  68. Hesper, R., Khudchenko, A., Baryshev, A.M., et al., A high-performance 650-GHz sideband-separating mixer—design and results, IEEE Transactions on Terahertz Science and Technology, 2017, vol. 7, no. 6, pp. 686–693. https://doi.org/10.1109/TTHZ.2017.2758270

    Article  ADS  Google Scholar 

  69. Kojima, T., Kroug, M., Uemizu, K., et al., Performance and characterization of a wide IF SIS-mixer-preamplifier module employing High-J c SIS junctions, IEEE Transactions on Terahertz Science and Technology, 2017, vol. 7, no. 6, pp. 694–703. https://doi.org/10.1109/TTHZ.2017.2758260

    Article  ADS  CAS  Google Scholar 

  70. Baryshev, A.M., Hesper, R., Mena, F.P., et al., The ALMA Band 9 receiver. Design, construction, characterization, and first light, Astron. Astrophys., 2015, vol. 577, p. A129. https://doi.org/10.1051/0004-6361/201425529

    Article  Google Scholar 

  71. Tretyakov, I., Ryabchun, S., Finkel, M., et al., Low noise and wide bandwidth of NbN hot-electron bolometer mixers, Appl. Phys. Lett., 2011, vol. 98, no. 3, p. 033507. https://doi.org/10.1063/1.3544050

    Article  ADS  CAS  Google Scholar 

  72. Putz, P., Honingh, C.E., Jacobs, K., et al., Terahertz hot electron bolometer waveguide mixers for GREAT, Astron. Astrophys., 2012, vol. 542, p. L2. https://doi.org/10.1051/0004-6361/201218916

    Article  ADS  CAS  Google Scholar 

  73. Risacher, C., Gusten, R., Stutzki, J., et al., First supra-THz heterodyne array receivers for astronomy with the SOFIA observatory, IEEE Transactions on Terahertz Science and Technology, 2016, vol. 6, no. 2, pp. 199–211. https://doi.org/10.1109/TTHZ.2015.2508005

    Article  ADS  CAS  Google Scholar 

  74. Khudchenko, A., Pavelev, D.G., Vaks, V.L., et al., Overview of techniques for THz QCL phase-locking, Eur. Phys. J. Web Conf., 2018, vol. 195, p. 04003. https://doi.org/10.1051/epjconf/201819504003

  75. Koshelets, V.P., Shitov, S.V., Ermakov, A.B., et al., Superconducting integrated receiver for TELIS, IEEE Transactions on Applied Superconductivity, 2005, vol. 15, no. 2, pp. 960–963. https://doi.org/10.1109/TASC.2005.850138

    Article  ADS  Google Scholar 

  76. Khudchenko, A., Baryshev, A.M., Rudakov, K.I., et al., High-gap Nb-AlN-NbN SIS junctions for frequency band 790-950 GHz, IEEE Transactions on Terahertz Science and Technology, 2016, vol. 6, no. 1, pp. 127–132. https://doi.org/10.1109/TTHZ.2015.2504783

    Article  ADS  CAS  Google Scholar 

  77. Gusten, R., Booth, R.S., Cesarsky, C., et al., Apex: The Atacama Pathfinder Experiment, Ground-based and Airborne Telescopes, 2006, vol. 6267, p. 626714. https://doi.org/10.1117/12.670798

    Article  Google Scholar 

  78. Yagoubov, P., Mroczkowski, T., Belitsky, V., et al., Wideband 67–116 GHz receiver development for ALMA Band 2, Astron. Astrophys., 2020, vol. 634, p. A46. https://doi.org/10.1051/0004-6361/201936777

    Article  CAS  Google Scholar 

  79. Rudakov, K.I., Khudchenko, A.V., Filippenko, L.V., et al., THz range low-noise SIS receivers for space and ground-based radio astronomy, Appl. Sci., 2021, vol. 11, no. 21. https://doi.org/10.3390/app112110087

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Rudnitskiy.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Likhachev, S.F., Rudnitskiy, A.G., Andrianov, A.S. et al. Subterahertz Astronomy in the Russian Federation: Prospects and Directions. Cosmic Res 62, 117–131 (2024). https://doi.org/10.1134/S0010952523700764

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952523700764

Navigation