Skip to main content
Log in

Current Sheets with Multicomponent Plasma in Magnetospheres of Planets of the Solar System

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

A self-consistent hybrid model of a thin current sheet (TCS) with a thickness of the order of several ion gyroradii is proposed that takes into account the multicomponent nature of collisionless space plasma. Several plasma components can be present in the tails of the magnetospheres of terrestrial planets (for example, the Earth, Mercury, Mars, and Venus). Variations in the current sheet (CS) structure in magnetospheric plasma in the presence of heavy oxygen ions with different characteristics are analyzed. It is shown that high relative concentrations of oxygen ions, as well as their relatively high temperatures and drift velocities, lead to significant thickening of CS and the formation of an additional embedded scale. In this case, on the profiles of the main characteristics—current density and magnetic field—symmetric breaks appear, which correspond to a sharp change in the gradients of variation in values. A comparison is performed and a qualitative agreement is shown between the simulation results and observational data in the tail of the Martian magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Zelenyi, L.M., Malova, Kh.V., and Artem’ev, A.V., et al., Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities, and particle acceleration, Plasma Phys. Rep., 2011, vol. 37, no. 2, pp. 118–160.

    Article  ADS  Google Scholar 

  2. Zelenyi, L., Oka, M., Malova, H., et al., Particle acceleration in Mercury’s magnetosphere, Space Sci. Rev., 2007, vol. 132, nos. 2–4, pp. 593– 609. https://doi.org/10.1007/s11214-007-9169-3

    Article  ADS  Google Scholar 

  3. Ashour-Abdalla, M., Zelenyi, L.M., Peroomian, V., et al., Consequences of magnetotail ion dynamics, J. Geophys. Res., 1994, vol. 99, no. A8, pp. 14891–14916.

    Article  ADS  Google Scholar 

  4. McPherron, R.L., Nishida, A., and Russell, C.T., Is near-Earth current sheet thinning the cause of auroral substorm onset?, in Quantitative Modeling of Magnetosphere–Ionosphere Coupling Processes, Kyoto, Japan: Kyoto Sangyo University, 1987, pp. 252–265.

    Google Scholar 

  5. Sergeev, V.A., Mitchell, D.G., Russell, C.T., et al., Structure of the tail plasma/current sheet at 11 Re and its changes in the course of substorm, J. Geophys. Res., 1993, vol. 98, 17345.

    Article  ADS  Google Scholar 

  6. Runov, A., Sergeev, V.A., Nakamura, R., et al., Local structure of the magnetotail current sheet: 2001 Cluster observations, Ann. Geophys., 2006, vol. 24, no. 1, pp. 247–262. https://doi.org/10.5194/angeo-24-247-2006

    Article  ADS  Google Scholar 

  7. Baumjohann, W., Roux, A., Le Contel, O., et al., Dynamics of thin current sheets: Cluster observations, Ann. Geophys., 2007, vol. 25, no. 6, pp. 1365–1389.

    Article  ADS  Google Scholar 

  8. Bagenal, F., Planetary magnetospheres, in Planets, Stars and Stellar Systems, Oswalt, T.D., French, L.M., and Kalas, P., Eds., Dordrecht: Springer, 2013, pp. 251–307.

    Google Scholar 

  9. Zelenyi, L., Malova, H., Grigorenko, E., et al., Current sheets in planetary magnetospheres, Plasma Phys. Controlled Fusion, 2019, vol. 61, no. 5, 054002.

    Article  ADS  Google Scholar 

  10. Runov, A., Sergeev, V.A., Nakamura, R., et al., Local structure of the magnetotail current sheet: 2001 Cluster observations, Ann. Geophys., 2006, vol. 24, no. 1, pp. 247–262. https://doi.org/10.5194/angeo-24-247-2006

    Article  ADS  Google Scholar 

  11. Sergeev, V., Runov, A., Baumjohann, W., et al., Current sheet flapping motion and structure observed by Cluster, Geophys. Res. Lett., 2003, vol. 30, no. 6, 1327. https://doi.org/10.1029/2002GL016500

    Article  ADS  Google Scholar 

  12. Speiser, T.W., Particle trajectories in model current sheets: 1. Analytical solutions, J. Geophys. Res., 1965, vol. 70, pp. 4219–4226.

    Article  ADS  Google Scholar 

  13. Zelenyi, L.M., Malova, Kh.V., Grigorenko, E.E., and Popov, V.Yu., Thin current sheets: from the work of Ginzburg and Syrovatskii to the present day, Phys.-Usp., 2016, vol. 59, no. 11, pp. 1057–1090.

    Article  ADS  Google Scholar 

  14. Büchner, J. and Zelenyi, L.M., Regular and chaotic charged particle motion in magnetotaillike field reversals. 1. Basic theory of trapped motion, J. Geophys. Res., 1989, vol. 94, no. A9, pp. 11821–11842.

    Article  ADS  Google Scholar 

  15. Lennartsson, W. and Shelley, E.G., Survey of 0.1- to 16 keV/e plasma sheet ion composition, J. Geophys. Res., 1986, vol. 91, pp. 3061–3076. https://doi.org/10.1029/JA091iA03p03061

    Article  ADS  Google Scholar 

  16. Nose, M., Ieda, A., and Christon, S.P., Geotail observations of plasma sheet ion composition over 16 years: On variations of average plasma ion mass and O+ triggering substorm model, J. Geophys. Res., 2009, vol. 114, A07223. https://doi.org/10.1029/2009JA014203

    Article  ADS  Google Scholar 

  17. Sauvaud, J.-A., Louarn, P., Fruit, G., et al., Case studies of the dynamics of ionospheric ions in the Earth’s magnetotail, J. Geophys. Res., 2004, vol. 109, A01212. https://doi.org/10.1029/2003JA009996

    Article  ADS  Google Scholar 

  18. Kistler, L.M., Mouikis, C.G., Cao, X., et al., Ion composition and pressure changes in storm time and nonstorm substorms in the vicinity of the near-Earth neutral line, J. Geophys. Res., 2006, vol. 111, A11222. https://doi.org/10.1029/2006JA011939

    Article  ADS  Google Scholar 

  19. Artemyev, A.V., Petrukovich, A.A., Nakamura, R., et al., Proton velocity distribution in thin current sheets. Cluster observations and theory of transient trajectories, J. Geophys. Res., 2010, vol. 115, A12255. https://doi.org/10.1029/2010JA015702

    Article  ADS  Google Scholar 

  20. Kronberg, E., Ashour-Abdalla, M., Dandouras, I., et al., Circulation of heavy ions and their dynamical effects in the magnetosphere: Recent observations and models, Space Sci. Rev., 2014, vol. 184, pp. 173–235. https://doi.org/10.1007/s11214-014-0104-0

    Article  ADS  Google Scholar 

  21. Asano, Y., Nakamura, R., Baumjohann, W., et al., How typical are atypical current sheets?, Geophys. Res. Lett., 2005, vol. 32, no. 3, id L03108. https://doi.org/10.1029/2004GL021834

  22. Nakamura, R., Baumjohann, W., Runov, A., et al., Thin current sheets in the magnetotail observed by cluster, Space Sci. Rev., 2006, vol. 122, pp. 29–38.

    Article  ADS  Google Scholar 

  23. Eastwood, J.W., Consistency of fields and particle motion in the “Speiser” model of the current sheet, Planet. Space Sci., 1972, vol. 20, no. 10, pp. 1555–1568.

    Article  ADS  Google Scholar 

  24. Pritchett, P.L. and Coroniti, F.V., Formation and stability of the self-consistent one-dimensional tail current sheet, J. Geophys. Res., 1992, vol. 97, pp. 16773–16787.

    Article  ADS  Google Scholar 

  25. Kropotkin, A.P. and Domrin, V.I., Theory of a thin one-dimensional current sheet in collisionless space plasma, J. Geophys. Res., 1996, vol. 101, pp. 19893–19902.

    Article  ADS  Google Scholar 

  26. Sitnov, M.I., Zelenyi, L.M., Malova, H.V., et al., Thin current sheet embedded within a thicker plasma sheet: Self-consistent kinetic theory, J. Geophys. Res., 2000, vol. 105, no. A6, pp. 13029–13043.

    Article  ADS  Google Scholar 

  27. Zelenyi, L.M., Sitnov, M.I., Malova, H.V., et al., Thin and superthin ion current sheets. Quasi-adiabatic and nonadiabatic models, Nonlinear Processes Geophys., 2000, vol. 7, nos. 3–4, pp. 127–139.

    Article  ADS  Google Scholar 

  28. Harris, E.G., On a plasma sheet separating regions of oppositely directed magnetic field, Nuovo Cimento, 1962, vol. 23, no. 1, pp. 115–121.

    Article  Google Scholar 

  29. Zelenyi, L.M., Malova, H.V., Popov, V.Yu., et al., Nonlinear equilibrium structure of thin currents sheets: Influence of electron pressure anisotropy, Nonlinear Processes Geophys., 2004, vol. 11, nos. 5–6, pp. 579–587.

    Article  ADS  Google Scholar 

  30. Artemyev, A.V., Petrukovich, A.A., Zelenyi, L.M., et al., Thin embedded current sheets: Cluster observations of ion kinetic structure and analytical models, Ann. Geophys., 2009, vol. 27, no. 10, pp. 4075–4087. https://www.ann-geophys.net/27/4075/2009.

    Article  ADS  Google Scholar 

  31. Zelenyi, L.M., Malova, H.V., Popov, V.Yu., et al., “Matreshka” model of multilayered current sheet, Geophys. Res. Lett., 2006, no. 33, L05105. https://doi.org/10.1029/2005GL025117

  32. Krall, N.A. and Trivelpiece, A.W., Principles of Plasma Physics, New York: McGraw-Hill, 1973.

    Book  Google Scholar 

  33. Pulkkinen, T.I., Baker, D.N., Owen, C.J., et al., Thin current sheets in the deep geomagnetotail, Geophys. Res. Lett., 1993, vol. 20, pp. 2427–2430.

    Article  ADS  Google Scholar 

  34. Francfort, P. and Pellat, R., Magnetic merging in collisionless plasmas, Geophys. Res. Lett., 1976, vol. 3, no. 8, pp. 433–436.

    Article  ADS  Google Scholar 

  35. Grigorenko, E.E., Shuvalov, S.D., Malova, H.V., et al., Imprints of quasiadiabatic ion dynamics on the current sheet structures observed in the Martian magnetotail by MAVEN, J. Geophys. Res., 2017, vol. 122, no. 10, pp. 10176–10193.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. V. Malova.

Additional information

Translated by N. Topchiev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domrin, V.I., Malova, K.V., Popov, V.Y. et al. Current Sheets with Multicomponent Plasma in Magnetospheres of Planets of the Solar System. Cosmic Res 58, 426–435 (2020). https://doi.org/10.1134/S0010952520060039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952520060039

Navigation