Skip to main content
Log in

Modeling of different scenarios of thin current sheet equilibria in the Earth’s magnetotail

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The Earth’s magnetosphere is an open dynamic system permanently interacting with the solar wind, i.e., the plasma flow from the Sun. Some plasma processes in the magnetosphere are of spontaneous explosive character, while others develop rather slowly as compared to the characteristic times of plasma particle motion in it. The large-scale current sheet in the magnetotail can be in an almost equilibrium state both in quiet periods and during geomagnetic perturbations, and its variations can be considered quasistatic. Thus, under some conditions, the magnetotail current sheet can be described as an equilibrium plasma system. Its state depends on various parameters, in particular, on those determining the dynamics of charged particles. Knowing the main governing parameters, one can study the structure and properties of the current sheet equilibrium. This work is devoted to the self-consistent modeling of the equilibrium thin current sheet (TCS) of the Earth’s magnetotail, the thickness of which is comparable with the ion gyroradius. The main objective of this work is to examine how the TCS structure depends on the parameters characterizing the particle dynamics and magnetic field geometry. A numerical hybrid self-consistent TCS model in which the tension of magnetic field lines is counterbalanced by the inertia of ions moving through the sheet is constructed. The ion dynamics is considered in the quasi-adiabatic approximation, while the electron motion, in the conductive fluid approximation. Depending on the values of the adiabaticity parameter κ (which determines the character of plasma particle motion) and the dimensionless normal component of the magnetic field b z , the following two scenarios are considered: (A) the adiabaticity parameter is proportional to the particle energy and b z = const and (B) the particle energy is fixed and the adiabaticity parameter is proportional to b z . The structure of the current sheet and particle dynamics in it are studied as functions of the parameters κ and b z . It is shown that, in scenario A, the current sheet thickness decreases with increasing adiabaticity parameter due to a decrease in the ion gyroradius. Accordingly, the radius of curvature of magnetic field lines decreases, which leads to an increase in the contribution of electron drift currents near the neutral plane z = 0. Numerical simulations demonstrate that current equilibria can exist if the adiabaticity parameter lies in the range 0.05 ≤ κ ≤ 0.7. At κ ∼ 0.7, the contribution of electron drift currents to the total current density is much larger than the contribution of ions and the ion motion becomes chaotic. At larger values of the adiabaticity parameter, no equilibrium solutions were found in the framework of the given one-dimensional model. Therefore, the value κ = 0.7 corresponds to the upper applicability limit of the quasi-adiabatic model of the current sheet. In scenario B, an increase in the parameter κ leads to the appearance of a large number of quasi-trapped ions in the current sheet, due to which the current sheet thickens and the amplitude of the current density decreases. As a result, equilibrium solutions exist in a much narrower range of the adiabaticity parameter, 0.05≤ κ ≤ 0.25. Consequences of the existence of parametric boundaries of equilibrium solutions for the TCS under actual geomagnetic conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. F. Ness, J. Geophys. Res. 70, 2989 (1965).

    Article  ADS  Google Scholar 

  2. Plasma Heliogeophysics, Ed. by L. M. Zelenyi and I. S. Veselovskii (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  3. T. W. Speiser, J. Geophys. Res. 70, 4219 (1965).

    Article  ADS  Google Scholar 

  4. V. A. Sergeev, D. G. Mitchell, C. T. Russell, and D. J. Williams, J. Geophys. Res. 98, 17345 (1993).

    Article  ADS  Google Scholar 

  5. A. V. Artemyev, A. A. Petrukovich, L. M. Zelenyi, R. Nakamura, H. V. Malova, and V. Y. Popov, Ann. Geophys. 27, 4075 (2009).

    Article  ADS  Google Scholar 

  6. A. A. Petrukovich, A. V. Artemyev, H. V. Malova, V. Y. Popov, R. Nakamura, and L. M. Zelenyi, J. Geophys. Res. 116, A00I25 (2011).

    ADS  Google Scholar 

  7. L. M. Zelenyi, H. V. Malova, A. V. Artemyev, V. Yu. Popov, and A. A. Petrukovich, Plasma Phys. Rep. 37, 118 (2011).

    Article  ADS  Google Scholar 

  8. A. Runov, R. Nakamura, W. Baumjohann, R. A. Treumann, T. L. Zhang, M. Volwerk, Z. Voros, A. Balogh, K. H. Glassmeier, B. Klecker, H. Rème, and L. Kistler, Geophys. Rev. Lett. 30, 1579 (2003).

    Article  ADS  Google Scholar 

  9. V. Sergeev, A. Runov, W. Baumjohann, R. Nakamura, T. L. Zhang, M. Volwerk, A. Balogh, H. Reme, J.-A. Sauvaud, M. Andre, and B. Klecker, Geophys. Res. Lett. 30, 1327 (2003).

    Article  ADS  Google Scholar 

  10. L. M. Zelenyi, A. V. Artemyev, V. Anton, H. V. Malova, and V. Popov, J. Atmos. Solar-Terr. Phys. 70, 325 (2008).

    Article  ADS  Google Scholar 

  11. L. M. Zelenyi, A. V. Artemyev, H. V. Malova, A. A. Petrukovich, and R. Nakamura, Phys. Usp. 53, 933 (2010).

    Article  ADS  Google Scholar 

  12. M. I. Sitnov and A. T. Y. Lui, J. Geophys. Res. 104, 6941 (1999).

    Article  ADS  Google Scholar 

  13. A. V. Gordeev, A. S. Kingsep, and L. I. Rudakov, Phys. Rep. 243, 215 (1994).

    Article  ADS  Google Scholar 

  14. V. A. Sergeev, T. I. Pulkkinen, and R. J. Pellinen, J. Geophys. Res. 101, 13047 (1996).

    Article  ADS  Google Scholar 

  15. V. A. Sergeev, V. Angelopoulos, and R. Nakamura, Geophys. Rev. Lett. 39, L05101 (2012).

    Article  ADS  Google Scholar 

  16. N. A. Tsyganenko, Planet. Space Sci. 30, 1007 (1982).

    Article  ADS  Google Scholar 

  17. W. G. Pilipp and G. Morfill, J. Geophys. Res. 83, 5670 (1978).

    Article  ADS  Google Scholar 

  18. E. G. Harris, Nuovo Cim. 23, 115 (1962).

    Article  MATH  Google Scholar 

  19. J. Chen and P. J. Palmadesso, J. Geophys. Res. 91, 1499 (1986).

    Article  ADS  Google Scholar 

  20. B. Lembege and R. Pellat, Phys. Fluids 25, 1995 (1982).

    Article  ADS  MATH  Google Scholar 

  21. P. Yoon and A. T. Y. Lui, J. Geophys. Res. 109, 1213 (2004).

    Article  Google Scholar 

  22. A. T. Y. Lui, J. Geophys. Res. 101, 13067 (1996).

    Article  ADS  Google Scholar 

  23. J. R. Kan, J. Geophys. Res. 78, 3773 (1973).

    Article  ADS  Google Scholar 

  24. G. W. Walker, Proc. Roy. Soc. London A 91, 410 (1915).

    Article  ADS  MATH  Google Scholar 

  25. J. Birn, R. Sommer, and K. Schindler, Astrophys. Space Sci. 35, 389 (1975).

    Article  ADS  Google Scholar 

  26. K. Schindler and J. Birn, Space Sci. Rev. 44, 307 (1986).

    Article  ADS  Google Scholar 

  27. J. W. Eastwood, Planet. Space Sci. 20, 1555 (1972).

    Article  ADS  Google Scholar 

  28. P. L. Pritchett and F. V. Coroniti, J. Geophys. Res. 97, 16773 (1992).

    Article  ADS  Google Scholar 

  29. J. Büchner and L. M. Zelenyi, J. Geophys. Res. 94, 11821 (1989).

    Article  ADS  Google Scholar 

  30. P. Francfort and R. Pellat, Geophys. Rev. Lett. 3, 433 (1976).

    Article  ADS  Google Scholar 

  31. A. A. Bykov, L. M. Zelenyi, and H. V. Malova, Plasma Phys. Rep. 34, 128 (2008).

    Article  ADS  Google Scholar 

  32. L. M. Zelenyi, M. S. Dolgonosov, A. A. Bykov, V. Yu. Popov, and H. V. Malova, Kosm. Issl. 40, 385 (2002).

    Google Scholar 

  33. L. M. Zelenyi, D. Delcourt, H. V. Malova, A. S. Sharma, V. Y. Popov, and A. A. Bykov, Adv. Space Res. 30, 1629 (2002).

    Article  ADS  Google Scholar 

  34. L. M. Zelenyi, M. I. Sitnov, H. V. Malova, and A. S. Sharma, Nonlin. Processes Geophys. 7, 127 (2000).

    Article  ADS  Google Scholar 

  35. M. I. Sitnov, L. M. Zelenyi, H. V. Malova, and A. S. Sharma, J. Geophys. Res. 105, 13029 (2000).

    Article  ADS  Google Scholar 

  36. A. P. Kropotkin and V. I. Domrin, J. Geophys. Res. 101, 19893 (1996).

    Article  ADS  Google Scholar 

  37. P. L. Pritchett and F. V. Coroniti, J. Geophys. Res. 100, 23551 (1995).

    Article  ADS  Google Scholar 

  38. A. P. Kropotkin and V. Domrin, Ann. Geophys. 27, 1353 (2009).

    Article  ADS  Google Scholar 

  39. G. R. Burkhart, J. F. Drake, P. B. Dusenbery, and T. W. Speiser, J. Geophys. Res. 97, 13799 (1992).

    Article  ADS  Google Scholar 

  40. L. M. Zelenyi, H. V. Malova, V. Y. Popov, D. Delcourt, and A. S. Sharma, Nonlin. Processes Geophys. 11, 1 (2004).

    Article  Google Scholar 

  41. L. M. Zelenyi, H. V. Malova, V. Y. Popov, D. C. Delcourt, N. Y. Ganushkina, and A. S. Sharma, Geophys. Rev. Lett. 33, L05105 (2006).

    ADS  Google Scholar 

  42. A. Runov, R. Nakamura, W. Baumjohann, T. I. Zhang, and M. Volverk, Geophys. Rev. Lett. 30, 1036 (2003).

    Article  ADS  Google Scholar 

  43. L. M. Zelenyi, D. C. Delcourt, H. V. Malova, and A. S. Sharma, Geophys. Rev. Lett. 29, 1608 (2002).

    Article  ADS  Google Scholar 

  44. L. M. Zelenyi, H. V. Malova, and V. Yu. Popov, JETP Lett. 78, 296 (2003).

    Article  ADS  Google Scholar 

  45. R. Z. Sagdeev, D. A. Usikov, and G. M. Zaslavsky, Nonlinear Physics (Nauka, Moscow, 1988; Harwood Academic, New York, 1988).

    MATH  Google Scholar 

  46. B. V. Chirikov, Chaos, Solitons, Fractals 1, 79 (1991).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. B. U. Sonnerup, J. Geophys. Res. 76, 8211 (1971).

    Article  ADS  Google Scholar 

  48. M. Ashour-Abdalla, L. M. Zelenyi, V. Peroomian, and R. L. Richard, Geophys. Res. 99, 14891 (1994).

    Article  ADS  Google Scholar 

  49. O. V. Mingalev, I. V. Mingalev, H. V. Malova, and L. M. Zelenyi, Plasma Phys. Rep. 33, 942 (2007).

    Article  ADS  Google Scholar 

  50. F. de Hoffmann and E. Teller, Phys. Rev. 80, 692 (1950).

    Article  ADS  MATH  Google Scholar 

  51. A. S. Roshal’, Modeling of Charged Beams (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  52. Ch. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985).

    Google Scholar 

  53. G. T. Golovin, Difference Methods in Mathematical Physics (MGU, Moscow, 1979) [in Russian].

    Google Scholar 

  54. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981).

    Google Scholar 

  55. D. A. Ovodkov, V. Yu. Popov, and H. V. Malova, Vest. Mosk. Univ., Ser. Fiz. Astronom., No. 2, 10 (2006).

    Google Scholar 

  56. G. F. Chew, M. L. Goldberger, and F. E. Low, Proc. Roy. Soc. A 236, 112 (1956).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  57. D. C. Delcourt and R. F. Martin, J. Geophys. Res. 104, 383 (1999).

    Article  ADS  Google Scholar 

  58. D. C. Delcourt, J. A. Sauvaud, R. F. Martin, and T. E. Moore, J. Geophys. Res. 101, 17409 (1996).

    Article  ADS  Google Scholar 

  59. E. E. Grigorenko, L. M. Zelenyi, M. S. Dolgonosov, A. V. Artemiev, C. J. Owen, J.-A. Sauvaud, M. Hoshino, and M. Hirai, Space Sci. Rev. 164, 133 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. V. Malova.

Additional information

Original Russian Text © A.A. Ul’kin, H.V. Malova, V.Yu. Popov, L.M. Zelenyi, 2015, published in Fizika Plazmy, 2015, Vol. 41, No. 2, pp. 170–187.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ul’kin, A.A., Malova, H.V., Popov, V.Y. et al. Modeling of different scenarios of thin current sheet equilibria in the Earth’s magnetotail. Plasma Phys. Rep. 41, 154–170 (2015). https://doi.org/10.1134/S1063780X15010043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X15010043

Keywords

Navigation