Skip to main content
Log in

Method of virtual trajectories for the design of gravity assisted missions

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

A novel method of virtual trajectories is proposed for the design of multiple gravity assist trajectories. The database of virtual trajectories can be tabulated for any planetary sequence and used in subsequent calculations. Requirements for the mission duration and the launch date are taken into account during the iterative procedure of database screening and refinement. The results of applying the virtual trajectories method to the design of a mission to Uranus are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kondratyuk, Yu.V., Tem, kto budet chitat’, chtoby stroit’ (ToThose Who Will Read in order to Build), Manuscript, 1918–1919.

    Google Scholar 

  2. Tsander, F.A., Perelety na drugie planety (Flights to Other Planets), Tekhnika i zhizn’, Issue 13, 1924.

    Google Scholar 

  3. Minovitch, M. A method for determining interplanetary free-fall reconnaissance trajectories, JPL Technical Memo TM-312-130, 1961, pp. 38–44.

    Google Scholar 

  4. Di Lizia, P., Radice, G., Izzo, D., and Vasile, M., On the solution of interplanetary trajectory design problems by global optimization methods, Proc. of Global Optimization Workshop, Almeria, Spain, 2005, pp. 159–164.

    Google Scholar 

  5. Okhotsimskii, D.E. and Sikharulidze, Yu.G., Osnovy mekhaniki kosmicheskogo poleta (Principles of Space Flight Mechanics), Moscow: Nauka, 1990.

    Google Scholar 

  6. Levantovskii, V.I., Mekhanika kosmicheskogo poleta v elementarnom izlozhenii (Space Flight Mechanics: Elementary Account), Moscow: Nauka, 1980.

    Google Scholar 

  7. Hughes, G. and McInnes, C.R., Solar sail hybrid trajectory optimization, Advances in the Astronautical Sciences, 2001, vol. 109, pp. 2369–2380.

    Google Scholar 

  8. Rogata, P., Di Sotto, E., Graziano, M., and Graziani, F., Guess value for interplanetary transfer design through genetic algorithms, Proc. of 13th AAS/AIAA Spacec Flight Mechanics Meeting, AAS 03-140, Ponce, Puerto Rico, 2003.

  9. Dachwald, B., Optimization of solar sail interplanetary trajectories using evolutionary neurocontrol, Journal of Guidance, Control, and Dynamics, 2004, vol. 27, no. 1, pp. 66–72.

    Article  ADS  Google Scholar 

  10. Wirthman, D.J., Park, S.Y., and Vadali, S.R., Trajectory optimization using parallel shooting method on parallel computer, Journal of Guidance, Control, and Dynamics, 1995, vol. 18, no. 2, pp. 377–379.

    Article  ADS  Google Scholar 

  11. Vasile, M., A global approach to optimal space trajectory design, Advances in the Astronautical Sciences, 2003, vol. 114, pp. 621–640.

    Google Scholar 

  12. Izzo, D., Becerra, V.M., et al., Search pruning and global optimization of multiple gravity assist spacecraft trajectories, Journal of Global Optimization, 2007, vol. 38, no. 2, pp. 283–296.

    Article  MathSciNet  MATH  Google Scholar 

  13. Fedotov, G.G., Optimization of flight trajectories of a spacecraft with electric propulsion using the gravitational maneuver, Kosm. Issled., 2004, vol. 42, no. 4, pp. 404–413. [Cosmic Research, pp. 389–397].

    Google Scholar 

  14. Grigoriev, I.S. and Grigoriev, K.G., The use of solutions to problems of spacecraft trajectory optimization in impulse formulation when solving the problems of optimal control of trajectories of a spacecraft with limited thrust engine: 1, Kosm. Issled., 2007, vol. 45, no. 4, pp. 358–366. [Cosmic Research, pp. 339–347].

    Google Scholar 

  15. Petukhov, V.G., Optimization of interplanetary trajectories for spacecraft with ideally regulated engine using the continuation method, Kosm. Issled., 2008, vol. 46, no. 3, pp. 224–237. [Cosmic Reesearch, pp. 219–232].

    MathSciNet  Google Scholar 

  16. Arridge, C.S., Agnor, C.B., Andre, N., et al., Uranus Pathfinder: exploring the origins and evolution of ice giant planets, Experimental Astronomy, Online First, doi: 10.1007/s10686-011-9251-4. Available at http://www.springerlink.com/content/67471t823t067v63/. The date of data acquisition is October 19, 2011.

    Google Scholar 

  17. Appazov, R.F. and Sytin, O.G., Metody proektirovaniya traektorii nositelei i sputnikov Zemli (Methods of Designing Trajectories for Carrier Launchers and Satellites of the Earth), Moscow: Nauka, 1987.

    Google Scholar 

  18. Gobetz, F.W., Optimum transfers between hyperbolic asymptotes, AIAA Journal, 2006, vol. 1, no. 9, pp. 2034–2041.

    Article  Google Scholar 

  19. Kubasov, V.N. and Dashkov, A.A., Mezhplanetnye polety (Interplanetary Flights), Moscow: Mashinostroenie, 1979.

    Google Scholar 

  20. Soyuz CSG User’s Manual, Issue 1, Arianespace, 2006. Available at http://www.arianespace.com/launch-services-soyuz/Soyuz_Users_Manual_CSG_June06.pdf. The date of data acquisition is September 21, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Ovchinnikov.

Additional information

Original Russian Text © M.Yu. Ovchinnikov, S.P. Trofimov, M.G. Shirobokov, 2013, published in Kosmicheskie Issledovaniya, 2013, Vol. 51, No. 6, pp. 484–496.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovchinnikov, M.Y., Trofimov, S.P. & Shirobokov, M.G. Method of virtual trajectories for the design of gravity assisted missions. Cosmic Res 51, 439–451 (2013). https://doi.org/10.1134/S001095251306004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001095251306004X

Keywords

Navigation