Skip to main content
Log in

Explosive Decomposition of High Explosives with Ultrafine Metal Particle Inclusions under the Influence of Pulse Laser Radiation

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This study describes a model for initiating an explosive decomposition of composite materials based on high explosives that weakly absorb radiation and ultrafine metal inclusions under the influence of nanosecond laser pulses. The model is based on experimental data obtained by investigating the explosive decomposition of PETN with ultrafine metal particle inclusions (Al, Ni, and Fe). The model serves as a basis for constructing a scientifically grounded algorithm for determining the composition of a material with minimal thresholds for laser initiation of explosive decomposition, which makes it possible to replace most experiments with theoretical calculations and optoacoustic measurements. The algorithm is verified using data from laser initiation of RDX with inclusions of ultrafine iron particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. \(Q_{\rm abs}=\sigma /\sigma _{g}\), where \(\sigma\) is the true cross section of radiation absorption by the particle and \(\sigma _{g}\) is the geometric section [32].

REFERENCES

  1. A. A. Brish, I. A. Galeev, B. N. Zaitsev, et al., “Laser-Excited Detonation of Condensed Explosives," Fiz. Goreniya Vzryva 2 (3), 132–133 (1966) [Combust., Expl., Shock Waves 2 (3), 81–82 (1966); DOI: https://doi.org/10.1007/BF00749034].

    Article  Google Scholar 

  2. L. C. Yang and V. J. Menichelli, “Detonation of Insensitive High Explosives by a Q-Switched Ruby Laser," Appl. Phys. Lett. 19 (11), 473–475 (1971); DOI: 10.1063/1.1653778.

    Article  ADS  Google Scholar 

  3. E. I. Aleksandrov and A. G. Voznyuk, “Initiation of Lead Azide with Laser Radiation," Fiz. Goreniya Vzryva 14 (4), 86–91 (1978) [Combust., Expl., Shock Waves 14 (4), 480–484 (1978); DOI: https://doi.org/10.1007/BF00742955].

    Article  Google Scholar 

  4. L. V. Yong, T. C. Nguyen, and J. A. Waschl, Laser Ignition of Explosives, Pyrotechnics and Propellants: A Review (DSTO Aeronautical and Maritime Res. Lab., 1995).

  5. V. B. Ioffe, A. V. Dolgolaptev, V. E. Aleksandrov, and A. P. Obraztsov, “Laser Pulse Ignition of Condensed Systems Containing Aluminum," Fiz. Goreniya Vzryva 21 (3), 51–55 (1985) [Combust., Expl., Shock Waves 21 (3), 316–320 (1985); DOI: https://doi.org/10.1007/BF01463849].

    Article  Google Scholar 

  6. E. I. Aleksandrov, A. G. Voznyuk, and V. P. Tsipilev, “Effect of Absorbing Impurities on Explosive Initiation by Laser Light," Fiz. Goreniya Vzryva 25 (1), 3–9 (1989) [Combust., Expl., Shock Waves 25 (1), 1–7 (1989); DOI: https://doi.org/10.1007/BF00758226].

    Article  Google Scholar 

  7. H. Deng, L. Wang, D. Tang, et al., “Review on the Laser-Induced Performance of Photothermal Materials for Ignition Application," Energ. Mater. Front 2 (3), 201–217 (2021); DOI: 10.1016/j.enmf.2021.08.001.

    Article  Google Scholar 

  8. M. A. Ilyushin, I. V. Tselinskii, I. A. Ugryumov, et al., “Influence of Ultrafine Carbon Particle Additives on the Laser Initiation Threshold of a Polymer-Containing Photosensitive Explosive Composition," Khim. Fiz. 24 (10), 49–56 (2005).

    Google Scholar 

  9. Yu. V. Sheikov, S. M. Bat’yanov, O. N. Kalashnikova, et al., “Initiating Aluminized High Explosives by Laser Radiation," Fiz. Goreniya Vzryva 54 (5), 57–64 (2018) [Combust., Expl., Shock Waves 54 (5), 563–569 (2018); DOI: https://doi.org/10.1134/S0010508218050088].

    Article  Google Scholar 

  10. Q.-L. Yan, M. Gozin, F.-Q. Zhao, et al., “Highly Energetic Compositions Based on Functionalized Carbon Nanomaterials," Nanoscale 8 (9), 4799–4851 (2016); DOI: 10.1039/C5NR07855E.

    Article  ADS  Google Scholar 

  11. A. S. Skripin, V. A. Ovchinnikov, V. P. Tsipilev, and A. N. Yakovlev, “Dependence of Explosion Initiation Threshold of PETN with Absorptive Additives on the Uniform Compression Pressure of the Sample," Izv. Vyssh. Uchebn. Zaved.,. Fiz., No. 11-3, 217–218 (2012).

  12. M. Comet, V. Pichot, B. Siegert, et al., “Use of Nanodiamonds as a Reducing Agent in a Chlorate-Based Energetic Composition," Propell., Explos., Pyrotech. 34 (2), 166–173 (2009); DOI: 10.1002/prep.200700900.

    Article  Google Scholar 

  13. V. A. Arkhipov and A. G. Korotkikh, “The Influence of Aluminum Powder Dispersity on Composite Solid Propellants Ignitability by Laser Radiation," Combust. Flame 159 (1), 409–415 (2012); DOI: 10.1016/j.combustflame.2011.06.020.

    Article  Google Scholar 

  14. A. N. Konovalov, N. V. Yudin, V. I. Kolesov, and V. A. Ul’yanov, “Increasing the Heating Efficiency and Ignition Rate of Certain Secondary Explosives with Absorbing Particles under Continuous Infrared Laser Radiation," Combust. Flame 205, 407–414 (2019); DOI: 10.1016/j.combustflame.2019.04.026.

    Article  Google Scholar 

  15. X. Fang, M. Sharma, C. Stennett, and P. P. Gill, “Optical Sensitisation of Energetic Crystals with Gold Nanoparticles for Laser Ignition," Combust. Flame 183, 15–21 (2017); DOI: 10.1016/j.combustflame.2017.05.002.

    Article  Google Scholar 

  16. V. I. Tarzhanov, V. I. Sdobnov, A. D. Zinchenko, and A. I. Pogrebov, “Laser Initiation of Low-Density Mixtures of PETN with Metal Additives," Fiz. Goreniya Vzryva 53 (2), 118–125 (2017) [Combust., Expl., Shock Waves 53 (2), 229–235 (2017); DOI: https://doi.org/10.1134/S0010508217020149].

    Article  Google Scholar 

  17. V. I. Tarzhanov, A. D. Zinchenko, V. I. Sdobnov, et al., “Laser Initiation of PETN," Fiz. Goreniya Vzryva 32 (4), 113–119 (1996) [Combust., Expl., Shock Waves 32 (4), 454–459 (1996); DOI: https://doi.org/10.1007/BF01998499].

    Article  Google Scholar 

  18. E. D. Aluker, A. G. Krechetov, A. Y. Mitrofanov, et al., “Laser Initiation of Energetic Materials: Selective Photoinitiation Regime in Pentaerythritol Tetranitrate," J. Phys. Chem. C 115 (14), 6893–6901 (2011); DOI: 10.1021/jp1089195.

    Article  Google Scholar 

  19. B. P. Aduev, D. R. Nurmukhametov, A. A. Zvekov, et al., “Laser Initiation of PETN-Based Composites with Additives of Ultrafine Aluminium Particles," Fiz. Goreniya Vzryva 52 (6), 104–111 (2016) [Combust., Expl., Shock Waves 52 (6), 713–718 (2016); DOI: https://doi.org/10.1134/S0010508216060113].

    Article  Google Scholar 

  20. B. P. Aduev, D. R. Nurmukhametov, A. A. Zvekov, et al., “Laser Initiation of PETN–Iron Nanoparticle Composites," Khim. Fiz. 35 (7), 38–43 (2016) [Russ. J. Phys. Chem. B 10, 615–620 (2016); DOI: https://doi.org/10.1134/S1990793116040023].

    Article  Google Scholar 

  21. B. P. Aduev, D. R. Nurmukhametov, A. A. Zvekov, and I. Yu. Liskov, “Influence of the Size of Inclusions of Ultrafine Nickel Particles on the Laser Initiation Threshold of PETN," Fiz. Goreniya Vzryva 51 (4), 82–86 (2015) [Combust., Expl., Shock Waves 51 (4), 472–475 (2015); DOI: https://doi.org/10.1134/S0010508215040115.

    Article  Google Scholar 

  22. B. P. Aduev, D. R. Nurmukhametov, R. I. Furega, and A. A. Zvekov, “Controlling Pentaerythrite Tetranitrate Sensitivity to the Laser Effect Through the Addition of Nickel and Aluminum Nanoparticles," Khim. Fiz. 33 (6), 37–41 (2014) [Russ. J. Phys. Chem. B 8, 352–355 (2014); DOI: https://doi.org/10.1134/S1990793114030178].

    Article  Google Scholar 

  23. B. P. Aduev, N. R. Nurmukhametov, R. P. Kolmykov, et al., “Explosive Decomposition of Pentaerythritol Tetranitrate Pellets Containing Nickel Nanoparticles with Various Radii," Khim. Fiz. 35 (8), 37–43 (2016) [Russ. J. Phys. Chem. B 10, 621–627 (2016); DOI: https://doi.org/10.1134/S1990793116040187].

    Article  Google Scholar 

  24. B. P. Aduev, D. R. Nurmukhametov, G. M. Belokurov, et al., “Optoacoustic Effects in Pentaerythritol Tetranitrate with Ultrafine Aluminum-Particle Inclusions under Pulsed-Laser Action," Opt. Spektrosk. 124 (3), 404–409 (2018); DOI: https://doi.org/10.1134/S0030400X18030049.

    Article  ADS  Google Scholar 

  25. B. P. Aduev, D. R. Nurmukhametov, A. A. Zvekov, et al., “Effect of Variations in the Gas-Dynamic Unloading on the Laser Initiation of the PETN-Aluminum Composite," Zh. Tekh. Fiz. 89 (2), 174–178 (2019); Tech. Phys. 64, 143–147 (2019); DOI: https://doi.org/10.1134/S1063784219020026].

    Article  ADS  Google Scholar 

  26. B. P. Aduev, D. R. Nurmukhametov, G. M. Belokurov, et al., “Laser Initiation of PETN with Inclusions of Aluminum Nanoparticles under Static Pressure," Fiz. Goreniya Vzryva 55 (2), 127–134 (2019) [Combust., Expl., Shock Waves 55 (2), 237–243 (2019); DOI: https://doi.org/10.1134/S0010508219020138].

    Article  Google Scholar 

  27. B. P. Aduev, D. R. Nurmukhametov, R. I. Furega, et al., “Explosive Decomposition of PETN with Nanoaluminum Additives under the Influence of Pulsed Laser Radiation at Different Wavelengths," Khim. Fiz. 32 (8), 39–42 (2013) [Russ. J. Phys. Chem. B 7, 453–456 (2013); DOI: https://doi.org/10.1134/S199079311304012X].

    Article  Google Scholar 

  28. A. V. Kalenskii, A. A. Zvekov, M. V. Anan’eva, et al., “Influence of Laser Wavelength on the Critical Energy Density for Initiation of Energetic Materials," Fiz. Goreniya Vzryva 50 (3), 98–104 (2014) [Combust., Expl., Shock Waves 50 (3), 333–338 (2014); DOI: https://doi.org/10.1134/S0010508214030113].

    Article  Google Scholar 

  29. B. P. Aduev, D. R. Nurmukhametov, G. M. Belokurov, et al., “Spectrokinetic Characteristics of Light Emission at the Early Stages of the Laser-Initiated Explosive Decomposition of PETN-Based Composites Containing Metal Nanoparticle Inclusions," Khim. Fiz. 36 (6), 45–51 (2017) [Russ. J. Phys. Chem. B 11, 460–465 (2017); DOI: https://doi.org/10.1134/S1990793117030137].

    Article  Google Scholar 

  30. B. P. Aduev, D. R. Nurmukhametov, I. Yu. Liskov, and R. Yu. Kovalev, “Measuring the Temperature of PETN Explosion Products with Iron Inclusions," Fiz. Goreniya Vzryva 53 (3), 115–118 (2017) [Combust., Expl., Shock Waves 53 (3), 349–352 (2017); DOI: https://doi.org/10.1134/S0010508217030133].

    Article  Google Scholar 

  31. V. G. Kriger, A. V. Kalenskii, A. A. Zvekov, et al., “Effect of Laser Radiation Absorption Efficiency on the Heating Temperature of Inclusions in Transparent Media," Fiz. Goreniya Vzryva 48 (6), 54–58 (2012) [Combust., Expl., Shock Waves 48 (6), 705–708 (2012); DOI: https://doi.org/10.1134/S001050821206007X].

    Article  Google Scholar 

  32. H. C. van de Hulst, Light Scattering by Small Particles (John Wiley and Sons, New York, 1957).

    Book  Google Scholar 

  33. B. P. Aduev, D. R. Nurmukhametov, I. Y. Liskov, et al., “Laser Pulse Initiation of RDX–Al and PETN–Al Composites Explosion," Combust. Flame 216, 468–471 (2020); DOI: 10.1016/j.combustflame.2019.10.037.

    Article  Google Scholar 

  34. B. P. Aduev, D. R. Nurmukhametov, I. Yu. Liskov, and A. A. Zvekov, “RDX–Al and PETN–Al Composites’ Glow Spectral Kinetics at the Explosion Initiated with Laser Pulse," Combust. Flame 223, 376–381 (2021); DOI: 10.1016/j.combustflame.2020.10.016.

    Article  Google Scholar 

  35. B. P. Aduev, D. R. Nurmukhametov, A. A. Zvekov, et al., “An Optoacoustic Study and Simulation of the Optical Properties of Cyclotrimethylenetrinitramine–Ultrafine Nickel Particle Composites," Opt. Spektrosk. 128 (5), 659–668 (2020) [Opt. Spectrosc. 128, 664–673 (2020); DOI: https://doi.org/10.1134/S0030400X20050021].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Aduev.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 6, pp. 110-115. https://doi.org/10.15372/FGV20230613.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aduev, B.P., Nurmukhametov, D.R., Nelyubina, N.V. et al. Explosive Decomposition of High Explosives with Ultrafine Metal Particle Inclusions under the Influence of Pulse Laser Radiation. Combust Explos Shock Waves 59, 770–775 (2023). https://doi.org/10.1134/S0010508223060138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223060138

Keywords

Navigation