Skip to main content
Log in

Hydrodynamic Low-Frequency Regimes of Unstable Combustion and Methods of Their Suppression in Low-Emission Combustors of Gas-Turbine Units

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The mechanisms of excitation of low-frequency unstable combustion of a methane–air mixture in full-scale low-emission combustors are experimentally studied. Experimental investigations of the flow characteristics without combustion in low-emission combustors shows that the central zone of reverse flows can serve as a source of regular hydrodynamic pressure oscillations in a wide range of flow regimes. A model of low-frequency unstable combustion is proposed. The model is based on hydrodynamic instability of the flow in the central zone of reverse flows, which can excite low-frequency regimes of unstable combustion. Methods for suppressing thermohydrodynamic instability of combustion are developed. Based on the proposed model and with the use of methods that ensure suppression of combustion instability, a low-emission combustor with a stable process of combustion in the entire range of its operation conditions is created and tested, which confirms the feasibility of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. R. Farmer, “GTX1000 Combined Cycles Net-Rated 60 to 120 MW and 54% Efficiency," Gas Turbine World 27 (3), 51–53 (1997).

    Google Scholar 

  2. M. Zajadatz, D. Pennell, S. Bernero, B. Paikert, R. Zoli, and K. Döbbeling, “Development and Implementation of the AEV Burner for the Alstom GT13E2," in Proc. of the ASME Turbo Expo 2012, Vol. 2, Parts A and B, Paper No. GT2012–68471, (2012), pp. 351–360; DOI: 10.1115/GT2012-68471.

  3. C. L. Vandervort, “9 ppm NO\(_{x}\)/CO Combustion System for ‘F’ Class Industrial Gas Turbines," J. Eng. Gas Turbines Power 123 (2), 317–321 (2001); DOI: 10.1115/1.1362661.

    Article  Google Scholar 

  4. G. K. Vedeshkin, E. D. Sverdlov, V. F. Goltsev, et al., “Development of a Low-Emission Combustor with an Ultra-Low Level of NO\(_{x}\) and CO Emissions," Konv. Mash., No. 3, 56–62 (2007).

  5. V. B. Raushenbakh, Vibrating Combustion (GIFML, Moscow, 1961) [in Russian].

    Google Scholar 

  6. M. S. Natanzon, Combustion Instability (Mashinostroenie, Moscow, 1986) [in Russian].

    Google Scholar 

  7. T. C. Lieuwen and V. Yang, Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling (AIAA, Reston, 2005); DOI: 10.2514/4.866807. (Prog. Astronaut. Aeronaut.; Vol. 210.)

    Book  Google Scholar 

  8. A. N. Doubovitsky, A. B. Lebedev, and E. D. Sverdlov, “Experimental Investigation of Low-Frequency Regimes of Unstable Combustion of Lean Methane–Air Mixtures in Low-Emission Combustors without Flow Swirling," Gorenie Vzryv 11 (3) 51–59 (2018).

  9. B. T. Zinn and Y. Neumeier, “An Overview of Active Control of Combustion Instabilities," in 35th Aerospace Sciences Meeting and Exhibit., AIAA Paper No. 97-0461 (1997); DOI: 10.2514/6.1997-461.

  10. M. Ikame, T. Kishi, K. Harumi, K. Hiraoka, et al., “Suppression of Combustion Noise and Combustion Oscillation by Thermo-Acoustic Active Control Using Secondary Flame," in Proc. of the ASME Turbo Expo 2005, Vol. 1, Paper No. GT2005-68233, 549–559 (2005); DOI: 10.1115/GT2005-68233.

  11. Y. Yang, X. Liu, and Z. Zhang, “Large Eddy Simulation Calculated Flame Dynamics of One F-Class Gas Turbine Combustor," Fuel 261, 116451 (2020); DOI: 10.1016/j.fuel.2019.116451.

    Article  Google Scholar 

  12. G. Winterfeld, “Versuche über Rezirkulationsströmungen in Flammen," Z. Flugwissenschaft 10 (4/5), 168–178 (1962).

    MATH  Google Scholar 

  13. T. Poinsot, “Prediction and Control of Combustion Instabilities in Real Engines," Proc. Combust. Inst 36 (1), 1–28 (2017); DOI: 10.1016/j.proci.2016.05.007.

    Article  Google Scholar 

  14. T. Lieuwen, in Unsteady Combustor Physics (Cambridge Univ. Press, New York, 2012).

    Book  MATH  Google Scholar 

  15. T. Poinsot and D. Veynante, Theoretical and Numerical Combustion (Edwards, Philadelphia, 2011).

    Google Scholar 

  16. A. N. Sekundov, Some Problems of Turbulent Flow Modeling (LAP Lambert Acad. Publ., 2014).

    Google Scholar 

  17. J. O’Connor, S. Hemchandra, and T. Lieuwen, “Combustion Instabilities in Lean Premixed Systems," in Lean Combustion (Academic Press, London, 2016), pp. 231–259; DOI: 10.1016/B978-0-12-804557-2.00007-9.

  18. A. B. Lebedev, A. N. Sekundov, and K. Ya. Yakubovskii, “Possible Mechanism of Self-Sustained Oscillations in a Combustor Operating on a Premixed Methane–Air Mixture," Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 57–62 (2017).

  19. R. Cheng and H. Levinsky, “Lean Premixed Burners," in Lean Combustion (Academic Press, London, 2016), pp. 203–229; DOI: 10.1016/B978-0-12-804557-2.00006-7.

  20. A. Hellberg, T. Andersson, and A. Häggmark, “Design, Testing and Performance of the Recently Developed 37-MW Siemens SGT-750," in Proc. of the ASME Turbo Expo 2012, Vol. 6, Paper No. GT2012-68249 (2012), pp. 45–50; DOI: 10.1115/GT2012-68249.

  21. G. K. Vedeshkin, E. D. Sverdlov, V. F. Goltsev, et al., “Low Emission Combustor Developed for Industrial Gas Turbine with NO\(_{x}\)/CO Level \(<\) 5 ppm," in Proc. Int. Gas Turbine Congress, IGTC2007-ID-160 (2007).

  22. A. I. Shvets and I. T. Shvets, Near Wake Gas Dynamics (Naukova Dumka, Kiev, 1976) [in Russian].

    Google Scholar 

  23. P. Bearman, “On Vortex Shedding from a Circular Cylinder in the Critical Reynolds Number Regime," J. Fluid Mech. 37 (3), 577–585 (1969); DOI: 10.1017/S0022112069000735.

    Article  ADS  Google Scholar 

  24. V. I. Furletov, “Termination of Periodic Vortex Formation beyond a Stabilizer in an Acoustically Damped Chamber upon Mixture Ignition," Fiz. Goreniya Vzryva 19 (2), 65–71 (1983) [Combust., Expl., Shock Waves 19 (2), 190–194 (1983)].

    Article  Google Scholar 

  25. N. M. C. Salvador, de M. T. Mendonça, and W. M. C. Dourado, “Large Eddy Simulation of Bluff Body Stabilized Turbulent Premixed Flame," J. Aerospace Technol. Manag. 5 (2), 181–196 (2013); DOI: 10.5028/jatm.v5i2.245.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Sverdlov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 6, pp. 3-11. https://doi.org/10.15372/FGV20220601.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sverdlov, E.D., Doubovitsky, A.N. & Lebedev, A.B. Hydrodynamic Low-Frequency Regimes of Unstable Combustion and Methods of Their Suppression in Low-Emission Combustors of Gas-Turbine Units. Combust Explos Shock Waves 58, 629–637 (2022). https://doi.org/10.1134/S0010508222060016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222060016

Keywords

Navigation