Skip to main content
Log in

Possible mechanism of self-oscillations in a combustor working on a premixed methane/air mixture

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The process of combustion of a premixed lean methane/air mixture in the model low-emission combustor is studied. Several known mechanisms of the self-oscillation generation and the flame flashback are analyzed. Numerical LES and SAS calculations of several combustors of typical configurations and regime parameters are presented. Some means of suppressing the flame flashback are proposed and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Rauschenbach, Vibrational Combustion, Fizmatgiz, Moscow (1961).

    Google Scholar 

  2. L. Crocco, “Research on Combustion Instability in Liquid Propellant Rockets,” in: Proc. 12th Intern. Symp on Combustion. Pittsburgh: The Combustion Institute, 1969 (1969), p. 65.

  3. A. A. Putnam, Combustion Driven Oscillations in Industry, Elsevier, New York (1971).

    Google Scholar 

  4. T. Lieuwen and V. Yang, “Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling,” in: AIAA Prog. Astronaut. Aeronaut. Vol. 210 (2005).

    Google Scholar 

  5. T. Lieuwen, Unsteady Combustor Physics, Cambridge Univ. Press, New York (2012).

    Book  MATH  Google Scholar 

  6. T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, Edwards, Philadelphia (2011).

    Google Scholar 

  7. J. Fritz, M. Kröner, and T. Sattlemayer, “Flashback in a Swirl Burner with Cylindrical Premixing Zone,” J. Engineering Gas Turbines and Power 126, 276 (2004).

    Article  Google Scholar 

  8. B. I. Brainin, A. A. Belokon, V. A. Zhuk, V. P. Maslov, B. I. Mineev, and A. N. Secundov, “Experimental Investigation of the Premixed Combustion Instability,” in: Proc. 6ht Intern. Symp. on Applications of Laser Techniques to Fluid Mechanics. Portugal, Lisbon, 1992 (1992), p. 1.

  9. V. Sabel’nikov, C. Brossard, M. Orain, F. Grisch, M. Barat, A. Ristori, and P. Gicquel, “Visualization Study of Thermo-Acoustic Instability in a Back-Facing Step Stabilized Lean Premixed Flame in High Turbulence Flow,” in: 10th Intern. Conf. on Fluid Control, Measurements, and Visualization. August 17–21, 2009, Moscow, Russia (2009).

    Google Scholar 

  10. V. R. Kuznetsov and S. A. Zaitsev, “Model Flashback in Combustors with Pre-Evaporation of the Fuel, Working on Homogeneous Mixtures,” Unpublished manuscript (1994).

    Google Scholar 

  11. A. P. Dowling, “Nonlinear Self-Excited Oscillations of a Ducted Flame,” J. Fluid Mech. 246, 271 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A. N. Sekundov, Certain Problems in Modeling Turbulent Flows [in Russian], Lambert Academic Publishing, Germany (2014).

    Google Scholar 

  13. C. K. W. Tam and L. Auriault, “Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics,” AIAA J. 34, 917 (1996).

    Article  ADS  MATH  Google Scholar 

  14. S. W. Rienstra, “ImpedanceModels in Time Domain Including the Extended Helmholtz ResonatorModel,” AIAA Paper No. 2686 (2006).

    Google Scholar 

  15. Q. Zhang and D. J. Bodony, “Numerical Simulation of Two-Dimensional Acoustic Liners with High-Speed Grazing Flow,” AIAA J. 49, 365 (2011).

    Article  ADS  Google Scholar 

  16. F. Bouziani, I. D. Landau, and R. R. Bitmead, “Quenching Oscillations in Combustion Instabilities Using Model-Based Closed-Loop Multiplicative Control,” in: European Control Conference ECC’07, 2–5 July 2007, Kos, Greece (2007).

    Google Scholar 

  17. Wei Wei, Jing Wang, Dong-hai Li, Min Zhu, and Ya-Li Xue, “Feedback Control of Combustion Oscillations in Combustion Chambers,” Comm. Nonlinear Sci. Numer. Simulation 15, 3274 (2010).

    Article  ADS  Google Scholar 

  18. F. R. Menter and Y. Egorov, “The Scale Adaptive Simulation Method for Unsteady Turbulent Flow Prediction. Part 1: Theory and Model Description,” Flow, Turbulence and Combustion 85, 113 (2010).

    Article  MATH  Google Scholar 

  19. V. L. Zimont, “Gas Premixed Combustion at High Turbulence. Turbulent Flame Closure Combustion Model,” Exp. Theor. Fluid Sci. 21 (1–3), 179 (2000).

    Article  Google Scholar 

  20. A. N. Sekundov, S. A. Cheprasov, and K. Ya. Yakubovskii, “Comparison of the Results of Modeling the CO Fields on a Flame Front Using RANS and LES,” Teplofiz. Vys. Temp. 53, 747 (2015).

    Google Scholar 

  21. M. Frenklach, H. Wang, and M. Goldenberg, “GRI-Mech—anOptimized Detailed Chemical ReactionMechanism for Methane Combustion,” http://www.me.berkeley.edu/grimec

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Lebedev.

Additional information

Original Russian Text © A.B. Lebedev, A.N. Sekundov, K.Ya. Yakubovskii, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2017, No. 3, pp. 57–62.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, A.B., Sekundov, A.N. & Yakubovskii, K.Y. Possible mechanism of self-oscillations in a combustor working on a premixed methane/air mixture. Fluid Dyn 52, 388–393 (2017). https://doi.org/10.1134/S0015462817030061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462817030061

Keywords

Navigation