Skip to main content
Log in

Combustion of a Composite Solid Propellant with Addition of Boron Powder

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A conjugated physical and mathematical model for the combustion of a composite solid propellant with addition of a polydisperse boron powder is presented. This model accounts for gas-dynamic processes in a two-phase, multi-rate, and multi-temperature heat-conducting medium, as well as heat transfer and reaction processes in solid propellant are taken into account above the surface of the solid propellant. Boundary conditions for the equality of heat and mass flows of propellant components are set on the propellant surface. The dependence of a burning rate of the composite solid propellant containing boron particles on the pressure above the propellant surface is derived from a numerical solution to the system of equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. D. A. Yagodnikov, Ignition and Combustion of Powdered Metals (Izd. Mosk. Gos. Tekh. Univ., Moscow, 2009) [in Russian].

    Google Scholar 

  2. V. A. Arkhipov, S. A. Basalaev, V. T. Kuznetsov, et al., “Modeling of Ignition and Combustion of Boron-Containing Solid Propellants," Fiz. Goreniya Vzryva 57 (3), 58–64 (2021) [Combust., Expl., Shock Waves 57 (3), 308–313 (2021); DOI: 10.1134/S0010508221030059.

    Article  Google Scholar 

  3. F. K. Bulanin, A. E. Sidorov, N. I. Poletaev, et al., “Augmentation of Aluminum and Boron Ignition," Fiz. Goreniya Vzryva 57 (2), 68–74 (2021) [Combust., Expl., Shock Waves 57 (2), 190–195 (2021); DOI: 10.1134/S0010508221020076].

    Article  Google Scholar 

  4. A. N. Pivkina, D. B. Meerov, K. A. Monogarov, et al., “Prospects of Using Boron Powders As Fuel. II. Influence of Aluminum and Magnesium Additives and Their Compounds on the Thermal Behavior of Boron Oxide," Fiz. Goreniya Vzryva 56 (2), 28–36 (2020) [Combust., Expl., Shock Waves 56 (2), 148–155 (2020); DOI: 10.1134/S0010508220020057].

    Article  Google Scholar 

  5. D. B. Meerov, K. A. Monogarov, N. V. Muravyev, et al., “Prospects of Using Boron Powders As Fuel. III. Influence of Polymer Binders on the Composition of Condensed Gasification Products of Model Boron-Containing Compositions," Fiz. Goreniya Vzryva 57 (5), 42–54 (2021) [Combust., Expl., Shock Waves 57 (5), 547–558 (2021); DOI: 10.1134/S001050822105004X].

    Article  Google Scholar 

  6. J. Liu, D. Liang, J. Xiao, et al., “Composition and Characteristics of Primary Combustion Products of Boron-Based Propellants," Fiz. Goreniya Vzryva 53 (1), 64–74 (2017) [Combust., Expl., Shock Waves 53 (1), 55–64 (2017); DOI: 10.1134/S0010508217010099].

    Article  Google Scholar 

  7. L. S. Yanovskii, V. V. Raznoschikov, I. S. Averkov, et al., “Evaluation of the Performance of Some Metals and Nonmetals in Solid Propellants for Rocket-Ramjet Engines," Fiz. Goreniya Vzryva 56 (1), 81–94 (2020) [Combust., Expl., Shock Waves 56 (1), 71–82 (2020); DOI: 10.1134/S0010508220010098].

    Article  Google Scholar 

  8. V. A. Poryazov, K. M. Moiseeva, A. Yu. Krainov, and V. A. Arkhipov, “Numerical Simulation of Combustion of a Composite Solid Propellant Containing Boron Powder," Fiz. Goreniya Vzryva 58 (2), 78–87 (2022) [Combust., Expl., Shock Waves 58 (2), 197–205 (2022); DOI: 10.1134/S0010508222020095].

    Article  Google Scholar 

  9. V. A. Poryazov and A. Yu. Krainov, “Calculation of the Rate of Combustion of a Metallized Composite Solid Propellant with Allowance for the Size Distribution of Agglomerates," Inzh.-Fiz. Zh. 89 (3), 568–574 (2016) [J. Eng. Phys. Thermophys. 89 (3), 579–586 (2016); DOI: https://doi.org/10.1007/s10891-016-1414-8].

    Article  ADS  Google Scholar 

  10. C. E. Hermance, “A Model of Composite Propellant Combustion Including Surface Heterogeneity and Heat Generation," AIAA J. 4 (9), 1629–1637 (1966); DOI: 10.2514/3.55284.

    Article  ADS  Google Scholar 

  11. R. I. Nigmatulin, The Dynamics Of Multiphase Media (Nauka, Moscow, 1987; Taylor and Francis, 1990).

    Google Scholar 

  12. A. Yu. Krainov, D. A. Krainov, K. M. Moiseeva, et al., “Mathematical Simulation of Combustion of Boron Powder Gas Suspension," Inzh.-Fiz. Zh. 94 (2), 360–371 (2021) [J. Eng. Phys. Thermophys. 94 (2), 345–356 (2021); DOI: https://doi.org/10.1007/s10891-021-02304-x].

    Article  ADS  Google Scholar 

  13. A. Yu. Krainov and V. A. Poryazov, “Numerical Simulation of the Extinction of N Powder by a Pressure Drop Based on a Coupled Combustion Model," Fiz. Goreniya Vzryva 51 (6), 47–52 (2015) [Combust., Expl., Shock Waves 51 (6), 664–669 (2015); DOI: 10.1134/S0010508215060076].

    Article  Google Scholar 

  14. M. K. King, “Boron Particle Ignition in Hot Gas Streams," Combust. Sci. Technol. 8 (5–6), 255–273 (1974); DOI: 10.1080/00102207308946648.

    Article  Google Scholar 

  15. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1987; Princeton Univ. Press, 1955).

    Google Scholar 

  16. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution to Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  17. A. N. Kraiko, “On Discontinuity Surfaces in a Medium Devoid of ‘Proper’ Pressure," Prikl. Mat. Mekh. 43 (3), 500–510 (1979). [J. Appl. Math. Mech. USSR 43 (3), 539–549 (1979)].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. O. G. Glotov and V. Ya. Zyryanov, “Condensed Combustion Products of Aluminized Propellants. 1. A Technique for Investigating the Evolution of Disperse-Phase Particles," Fiz. Goreniya Vzryva 31 (1), 74–80 (1995) [Combust., Expl., Shock Waves 31 (1), 72–78 (1995)].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Moiseeva.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 5, pp. 106-114.https://doi.org/10.15372/FGV20220513.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poryazov, V.A., Moiseeva, K.M. & Krainov, A.Y. Combustion of a Composite Solid Propellant with Addition of Boron Powder. Combust Explos Shock Waves 58, 602–609 (2022). https://doi.org/10.1134/S0010508222050136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222050136

Keywords

Navigation