Skip to main content
Log in

Numerical Simulation of Combustion of a Composite Solid Propellant Containing Boron Powder

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The combustion of a metallized composite solid propellant containing boron particles is numerically studied. The mathematical model is based on the approaches of two-phase reacting medium mechanics for describing processes in a two-phase flow above the propellant surface and the Hermance model for describing the decomposition of a composite solid propellant. The model of combustion of a metallized composite solid propellant takes into account the oxidation and combustion of boron particles. The dependence of the burning rate of a metallized composite solid propellant on the gas pressure above the combustion surface and the size of boron particles is determined from a parametric study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. L. S. Yanovskii, V. V. Raznoschikov, I. S. Averkov, et al., “Evaluation of the Performance of Some Metals and Nonmetals in Solid Propellants for Rocket-Ramjet Engines," Fiz. Goreniya Vzryva 56 (1), 81–94 (2020) [Combust., Expl., Shock Waves 56 (1), 71–82 (2020); DOI: 10.1134/S0010508220010098].

    Article  Google Scholar 

  2. M. Mitsuno, T. Kuwahara, K. Kosaka, and N. Kubota, Combustion of Metallized Propellants for Ducted Rockets, AIAA/ASME/SAE/ASEE 23rd Joint Propul. Conf., 1987; DOI: 10.2514/6.1987-1724.

  3. M. K. King, “Boron Ignition and Combustion in Air-Augmented Rocket Afterburners," Combust. Sci. Technol. 5 (4), 155–164 (1972).

    Article  Google Scholar 

  4. Ya. I. Vovchuk, A. N. Zolotko, L. A. Klyachko, and D. I. Polushchuk, “High-Temperature Combustion of an Immobile Boron Particle in an Oxygen-Bearing Medium," Fiz. Goreniya Vzryva 11 (4), 556–562 (1975) [Combust., Expl., Shock Waves 11 (4), 471–476 (1975)].

    Article  Google Scholar 

  5. A. N. Zolotko, A. M. Matsko, D. I. Polishchuk, et al., “Ignition of a Two-Component Gas Suspension of Metal Particles," Fiz. Goreniya Vzryva 16 (1), 23–26 (1980) [Combust., Expl., Shock Waves 16 (1), 20–23 (1980)].

    Article  Google Scholar 

  6. A. N. Zolotko, S. A. Kiro, and Ya. I. Vovchuk, “Ignition of Boron Carbide Particles in Dry Media Containing Oxygen," Fiz. Goreniya Vzryva 17 (6), 3–10 (1981) [Combust., Expl., Shock Waves 17 (6), 585–591 (1981)].

    Article  Google Scholar 

  7. A. N. Zolotko and T. A. Yakovleva, “Extinction of Dispersed Heterogeneous Systems," Fiz. Goreniya Vzryva 32 (6), 12–19 (1996) [Combust., Expl., Shock Waves 32 (6), 608–614 (1996)].

    Article  Google Scholar 

  8. L. N. Zolotko, “The Ignition and Combustion of Boron Dust Systems," in Combustion of Boron-Based Propellants and Solid Fuels: Book of Papers (CRC Press, Boca Raton, 1993).

  9. D. A. Yagodnikov, Ignition and Combustion of Powder-Like Metals (Izd. Mosk. Gos. Tekh. Univ., Moscow, 2009) [in Russian].

    Google Scholar 

  10. D. A. Yagodnikov, “Experimental Study of Combustion of a Cloud of Boron Particles in Air," Fiz. Goreniya Vzryva 46 (4), 64–71 (2010) [Combust., Expl., Shock Waves 46 (4), 426–432 (2010)].

    Article  Google Scholar 

  11. D. A. Yagodnikov, P. V. Papyrin, and A. V. Sukhov, “Mathematical Model of Ignition of a Single Particle of Aluminum Diboride," Nauka Obraz.: Nauch. Izd. Mosk. Gos. Tekh. Univ., No. 12, 452–462 (2014).

    Google Scholar 

  12. P. V. Papyrin, A. V. Sukhov, and D. A. Yagodnikov, “Unified Mathematical Model of Ignition and Combustion of Single Particles of Aluminum Diboride," Inzh. Zh.: Nauka Innov., No. 6 (66), 5–16 (2017).

    Google Scholar 

  13. H.-X. Xu, W.-Q. Pang, H.-W. Guo, et al., “Combustion Characteristics and Mechanism of Boron-Based, Fuel-Rich Propellants with Agglomerated Boron Powder," Centr. Eur. J. Energ. Mater. 11 (4), 575–587 (2014).

    Google Scholar 

  14. A. Yu. Krainov, D. A. Krainov, K. M. Moiseeva, et al., “Mathematical Simulation of Combustion of Boron Powder Gas Suspension," Inzh.-Fiz. Zh. 94 (2), 360–371 (2021) [J. Eng. Phys. Thermophy. 94, 345–356 (2021); DOI: 10.1007/s10891-021-02304-x].

    Article  ADS  Google Scholar 

  15. R. I. Nigmatulin, Dynamics of Multiphase Media (Nauka, Moscow, 1987; CRC Press, 1990).

    Google Scholar 

  16. V. A. Poryazov and A. Yu. Krainov, “Calculation of the Rate of Combustion of a Metallized Composite Solid Propellant with Allowance for the Size Distribution of Agglomerates," Inzh.-Fiz. Zh. 89 (3), 568–574 (2016) [J. Eng. Phys. Thermophys. 89, 579–586 (2016); DOI: 10.1007/s10891-016-1414-8].

    Article  ADS  Google Scholar 

  17. C. E. Hermance, “A Model of Composite Propellant Combustion Including Surface Heterogeneity and Heat Generation," AIAA J. 4 (9), 1629–1637 (1966).

    Article  ADS  Google Scholar 

  18. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1987; Plenum Press, New York, 1969).

    Google Scholar 

  19. I. P. Isachenko, V. A. Osipova, A. S. Sukomel, and S. Semyonov, Heat Transfer (Energiya, Moscow, 1975; University Press of the Pacific, 2000).

    Google Scholar 

  20. K. M. Moiseeva, A. Yu. Krainov, and A. A. Dement’ev, “Critical Conditions of Spark Ignition of a Bidisperse Aluminum Powder in Air," Fiz. Goreniya Vzryva 55 (4), 26–33 (2019) [Combust., Expl., Shock Waves 55 (4), 395–401 (2019); 10.1134/S001050821904004X].

    Article  Google Scholar 

  21. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution of Multidimensional Gas Dynamics Problems (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  22. A. N. Kraiko, “On Discontinuity Surfaces in a Medium Devoid of Proper Pressure," Prikl. Mat. Mekh. 43 (3), 500–510 (1979).

    MathSciNet  Google Scholar 

  23. A. A. Zenin, A. P. Glazkova, O. I. Leipunskii, and V. K. Bobolev, “Effect of Aluminum on the Burning of Ammonium Perchloratepolyformaldehyde Mixtures," Fiz. Goreniya Vzryva 4 (3), 299–304 (1968) [Combust., Expl., Shock Waves 4 (3), 165–168 (1968); DOI: 10.1007/BF00750854].

    Article  Google Scholar 

  24. V. A. Poryazov, O. G. Glotov, V. A. Arkhipov, et al., “Influence of Metal Powder Additives on the Combustion Characteristics of a Mixed Solid Fuel Based on Ammonium Perchlorate and an Inert Binder," in Nonequilibrium Processes: Recent Accomplishments, Ed. by S. M. Frolov and A. I. Lanshin (Torus Press, Moscow, 2020).

  25. A. S. Shteinberg, Fast Reactions in Energetic Materials: High-Temperature Decomposition of Rocket Propellants and Explosives (Fizmatlit, Moscow, 2006; Springer Science & Business Media, 2008).

    Google Scholar 

  26. V. K. Bulgakov and A. M. Lipanov, Theory of Erosive Combustion of Solid Propellants (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Moiseeva.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 2, pp. 78-87.https://doi.org/10.15372/FGV20220209.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poryazov, V.A., Moiseeva, K.M., Krainov, A.Y. et al. Numerical Simulation of Combustion of a Composite Solid Propellant Containing Boron Powder. Combust Explos Shock Waves 58, 197–205 (2022). https://doi.org/10.1134/S0010508222020095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222020095

Keywords

Navigation