Skip to main content
Log in

Improved Microwave Method for Measuring the Dynamic Parameters of Gasification of Condensed Materials

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A new microwave technique for measuring the transient gasification rate is described. A feature of the technique is that the mass loss during gasification is determined based on measurements of the time-varying resonant frequency of the microwave resonator with the test sample by sequentially recording the resonant characteristics of the sensor. This ensures independence of the measurement results from the change in the Q-value of the resonator during gasification of the propellant sample. A sensor prototype which is a coaxial resonator in which the sample under study is placed in the region of maximum electric field has been tested. Experiments have shown that the sensitivity (the ratio of the change in resonant frequency to the change in the inner diameter of the sample) of the new sensor design is two to four times higher than that of the previous sensor model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. V. E. Zarko and K. K. Kuo, “Critical Review of Methods for Regression Rate Measurements of Condensed Phase Systems," Int. J. Energ. Mater. Chem. Propul. 3 (1–6) 600–623 (1994); DOI: 10.1615/IntJEnergeticMaterialsChemProp.v 3.i1-6.590.

    Article  Google Scholar 

  2. V. F. Mikheev, V. E. Zarko, S. M. Borin, K. P. Kutsenogii, and V. N. Simonenko, “Measurement of Burning Rates in Transient Combustion Processes under Influence of External Radiation," Prog. Astronaut. Aeronaut. 63, 173–187 (1976); DOI: 10.2514/5.9781600865374.0173.0187.

  3. V. E. Zarko, “Fundamentals of Transient Combustion of Solid Propellants," Doct. Dissertation in Phys. and Math. Sci. (Inst. of Chem. Kinet. and Combust., Sib. Branch, USSR Acad. of Sci., Novosibirsk, 1984).

  4. V. S. Abrukov, A. E. Averson, and V. M. Mal’tsev, “New Possibilities of Investigating the Combustion Processes of Condensed Systems by Interferometry," Fiz. Goreniya Vzryva 19 (5), 66–69 (1983) [Combust., Expl., Shock Waves 19 (5), 594–596 (1983); https://doi.org/10.1007/BF00750431].

    Article  Google Scholar 

  5. R. A. Frederick (Jr.), “Measuring the Regression of a Burning Solid Propellant," Rev. Scient. Instrum. 67 (8) 2903–2909 (1996); DOI: 10.1063/1.1147070.

    Article  ADS  Google Scholar 

  6. N. Eisenreich, H. P. Kugler, and F. Sinn, “An Optical System for Measuring the Burning Rate of Solid Propellant Strands," Propell., Explos., Pyrotech. 12, 78–80 (1987).

    Article  ADS  Google Scholar 

  7. J. Wang, Z. Gao, and B. Sang, “Laser Technology for Measurement of Solid Propellant Transient Burning Rates during Rapid Depressurization," Fuel 80 (2) 263–271 (2001); DOI: 10.1016/S0016-2361(00)00087-9.

    Article  Google Scholar 

  8. J. J. Murphy and H. Krier, “Evaluation of Ultrasound Technique for Solid-Propellant Burning Rate Response Measurements," J. Propul. Power 18 (3) 641–651 (2002); DOI: 10.2514/2.5978.

    Article  Google Scholar 

  9. Y. Xiao, R. S. Amano, T. Cai, J. Li, and G. He, “Particle Velocity on Solid-Propellant Surface Using X-Ray Real-Time Radiography," AIAA J. 41 (9) 1763–1770 (2003); DOI: 10.2514/2.7294.

    Article  ADS  Google Scholar 

  10. L. D. Strand, K. R. Magiawala, and R. P. McNamara, “Microwave Measurement of the Solid-Propellant Pressure-Coupled Response Function," J. Spacecraft Rockets 17 (6) 483–488 (1980); DOI: 10.2514/3.57768.

    Article  ADS  Google Scholar 

  11. A. B. Kiskin, V. E. Zarko, and A. C. Mamaev, “Small Force Transducer with Extended Frequency Range and Compensation Environmental Disturbances," Gorenie Plasmokhim. 14 (4), 279–284 (2016).

    Google Scholar 

  12. V. V. Perov, V. E. Zarko, and A. S. Zhukov, “New Microwave Method for Measuring Unsteady Mass Gasification Rates of Condensed Systems," Fiz. Goreniya Vzryva 50 (6) 130–133 (2014) [Combust., Expl., Shock Waves 50 (6), 739–741 (2014). https://doi.org/10.1134/S0010508214060173].

    Article  Google Scholar 

  13. V. Zarko, V. Perov, A. Kiskin, and D. Nalivaichenko, “Microwave Resonator Method for Measuring Transient Mass Gasification Rate of Condensed Systems," Acta Astronaut. 158, 272–276 (2019); DOI: 10.1016/j.actaastro.2019.03.028.

    Article  ADS  Google Scholar 

  14. V. E. Zarko, A. B. Kiskin, and D. G. Nalivaichenko, “Mass Gasification Rate Measurement System," RU Patent No. 189669 U1, Publ. May 30, 2019; https:// www1.fips.ru/nregisters-doc-view/fips_servlet? DB=RUPM&rn=127&DocNumber=189669&TypeFile=html.

  15. V. Zarko, V. Perov, V. Zvegintsev, and D. Nalivaichenko, “New Method for Measuring Transient Mass Gasification Rate of Condensed Systems," in 56th Israel Annu. Conf. on Aerospace Sci. (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Podshivalov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 5, pp. 87-95.https://doi.org/10.15372/FGV20220511.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podshivalov, A.I., Grishin, Y.A., Kiskin, A.B. et al. Improved Microwave Method for Measuring the Dynamic Parameters of Gasification of Condensed Materials. Combust Explos Shock Waves 58, 585–592 (2022). https://doi.org/10.1134/S0010508222050112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222050112

Keywords

Navigation