Skip to main content
Log in

Investigation of Oscillation Modes in a High-Speed Flow with Heat Supply. I. Experiment

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Results of experimental investigations of the flow in a channel with sudden expansion without and with heat supply into a supersonic air flow are presented. Based on processing experimental data on the time evolution of static pressure on the channel walls, the spectral power of oscillations are determined. The analysis reveals an increase in the power spectral density of pressure oscillations in the frequency range of 250–400 Hz. The greatest increase in the spectral density is observed in the initial period of the process during ignition and at the end of flame stabilization. In the period corresponding to developed combustion, the peak value of the power spectrum of oscillations decreases, while the range of frequencies is extended to 400–600 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. F. A. Williams, Combustion Theory. The Fundamental Theory of Chemically Reacting Flow Systems (CRC Press, 1994).

    Google Scholar 

  2. R. I. Sujith and V. R. Unni, “Dynamical Systems and Complex Systems Theory to Study Unsteady Combustion," Proc. Combust. Inst. 38 (3), 3445–3462 (2021); DOI: 10.1016/j.proci.2020.07.081.

    Article  Google Scholar 

  3. F. S. Billig, “Research on Supersonic Combustion," J. Propul. Power 9 (4), 499–514 (1993); DOI: 10.2514/3.23652.

  4. F. Ladeinde and W. Li, “Differential Turbulent Supersonic Combustion of Hydrogen, Methane, and Ethylene, without Assisted Ignition," AIAA J. 56 (12), 4870–4883 (2018); DOI: 10.2514/1.J057124.

    Article  ADS  Google Scholar 

  5. J. Zhang, J. Chang, C. Kong, et al., “Flame Oscillation Characteristics in a Kerosene Fueled Dual Mode Combustor Equipped with Thin Strut Flameholder," Acta Astronaut. 161, 222–233 (2019); DOI: 10.1016/j.actaastro.2019.05.037.

    Article  ADS  Google Scholar 

  6. D. Baccarella, Q. Liu, B. McGann, et al., “Isolator-Combustor Interactions in a Circular Model Scramjet with Thermal and Non-Thermal Choking-Induced Unstart," J. Fluid Mech. 917 (A38), 1–36 (2021); DOI: 10.1017/jfm.2021.238.

    Article  MATH  MathSciNet  Google Scholar 

  7. Y. Cheng, T. Jin, K. Luo, et al., “Large Eddy Simulations of Spray Combustion Instability in an Aero-Engine Combustor at Elevated Temperature and Pressure," Aerosp. Sci. Technol. 108, 106329 (2021); DOI: 10.1016/j.ast.2020.106329.

    Article  Google Scholar 

  8. K.-C. Lin, K. Jackson, R. Behdadnia, et al., “Acoustic Characterization of an Ethylene-Fueled Scramjet Combustor with a Cavity Flameholder," J. Propul. Power 26 (6), 1161–1169 (2010); DOI: 10.2514/1.43338.

    Article  Google Scholar 

  9. H. Ouyang, W. Liu, and M. Sun, “The Large-Amplitude Combustion Oscillation in a Single-Side Expansion Scramjet Combustor," Acta Astronaut. 117, 90–98 (2015); DOI: 10.1016/j.actaastro.2015.07.016.

    Article  ADS  Google Scholar 

  10. H. M. Altay, L. E. Hudgins, and A. F. Ghoniem, “The Impact of Equivalence Ratio Oscillations on Combustion Dynamics in a Backward-Facing Step Combustor," Combust. Flame 156, 2106–2116 (2009); DOI: 10.1016/j.combustflame.2009.07.024.

    Article  Google Scholar 

  11. S. T. Ducruix, T. Schuller, D. Durox, and S. Candel, “Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms," J. Propul. Power 19 (5), 722–734 (2003); DOI: 10.2514/2.6182.

    Article  Google Scholar 

  12. J. Zhang and A. Ratner, “Experimental Study of the Effects of Hydrogen Addition on the Thermoacoustic Instability in a Variable-Length Combustor," Int. J. Hydrogen Energy 46 (29), 16086–16101 (2021); DOI: 10.1016/j.ijhydene.2021.02.063.

    Article  Google Scholar 

  13. G.-Y. Zhao, M.-B. Sun, Y.-N. Wang, et al., “Investigations of Injection Parameters on Combustion Oscillation in Supersonic Crossflow," Acta Astronaut. 152, 426–436 (2018); DOI: 10.1016/j.actaastro.2018.08.041.

    Article  ADS  Google Scholar 

  14. M. A. Goldfeld, “Processes of Self-Ignition and Flame Stabilization with Transverse Hydrogen Fuel Injection into a Supersonic Combustion Chamber," Teplofiz. Aeromekh. 27 (4), 601–613 (2020) [Thermophys. Aeromech. 27 (4), 573–584 (2020)].

    Article  ADS  Google Scholar 

  15. M. Sun, H. Wang, Z. Cai, and J. Zhu, Unsteady Supersonic Combustion (Springer, 2020); DOI: 10.1007/978-981-15-3595-6.

    Book  Google Scholar 

  16. H. T. Luong, Y. Wang, H. S. Han, and C. H. Sohn, “Combined Applications of Analytic Methods for Detection of Combustion Instability Triggering," Aerospace Sci. Technol. 118, 106994 (2021); DOI: 10.1016/j.ast.2021.106994.

    Article  Google Scholar 

  17. S. M. Rao and S. Karthick, “Studies on the Effect of Imaging Parameters on Dynamic Mode Decomposition of Time-Resolved Schlieren Flow Images," Aerospace Sci. Technol. 88, 136–146 (2019); DOI: 10.1016/j.ast.2019.03.004.

    Article  Google Scholar 

  18. V. Dekys, P. Kalman, P. Hanak, et al., “Determination of Vibration Sources by Using STFT," Procedia Eng. 177, 496–501 (2017); DOI: 10.1016/j.proeng.2017.02.251.

    Article  Google Scholar 

  19. X. Jin, Y. Tian, K. Zhao, et al., “Experimental Study on Supersonic Combustion Fluctuation Using Thin-Film Thermocouple and Time–Frequency Analysis," Acta Astronaut. 179, 33–41 (2021); DOI: 10.1016/j.actaastro.2020.09.041.

    Article  ADS  Google Scholar 

  20. N. E. Huang, Z. Shen, S. R. Long, et al., “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis," Proc. R. Soc. London, A 454 (1971), 903–995 (1998); DOI: 10.1098/rspa.1998.0193.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. D. S. Mironov, V. A. Lebiga, D. D. Miau, et al., “Application of the Hilbert–Huang Transform for the Analysis of Fluctuations behind a Straight Circular Cylinder," Sib. Fiz. Zh. 12 (3), 49–59 (2017).

    Google Scholar 

  22. M. A. Goldfeld, A. A. Maslov, A. V. Starov, et al., “IT-302M Hotshot Wind Tunnel as a Tool for the Development of Hypersonic Technologies," AIP Conf. Proc. 1770, 030020 (2016); DOI: 10.1063/1.4963962.

  23. A. A. Maslov, V. V. Shumskii, and M. I. Yaroslavtsev, “High-Enthalpy Hot-Shot Wind Tunnel with Combined Heating and Stabilization of Parameters," Teplofiz. Aeromekh. 20 (5), 535–546 (2013) [Thermophys. Aeromech. 20 (5), 527–538 (2013)].

    Article  Google Scholar 

  24. T. E. Diller, “Advances in Heat Flux Measurements," Adv. Heat Transfer 23, 279–368 (1993); DOI: 10.1016/S0065-2717(08)70008-X.

  25. M. A. Goldfeld, Yu. V. Zakharova, A. V. Fedorov, and N. N. Fedorova, “Effect of the Wave Structure of the Flow in a Supersonic Combustor on Ignition and Flame Stabilization," Fiz. Goreniya Vzryva 54 (6), 3–16 (2018) [Combust., Expl., Shock Waves 54 (6), 629–641 (2018); DOI: 10.1134/S0010508218060011].

    Article  Google Scholar 

  26. N. M. Astaf’eva, “Wavelet Analysis: Basic Theory and Some Applications," Usp. Fiz. Nauk 166, 1145–1170 (1996) [Phys.-Usp. 39 (11), 1085–1108 (1996); DOI: 10.1070/PU1996v039n11ABEH000111].

    Article  ADS  Google Scholar 

  27. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN (Cambridge Univ. Press, Cambridge, 1992).

    MATH  Google Scholar 

  28. Yu. E. Voskoboinikov, “Construction of Smoothing Cubic Splines in Machine Processing of Experimental Results," Avtometriya, No. 4, 110–117 (1979).

  29. J. Zhang, J. Chang, Z. Wang, et al., “Flame Propagation and Flashback Characteristics in a Kerosene Fueled Supersonic Combustor Equipped with Strut/Wall Combined Fuel Injectors," Aerosp. Sci. Technol. 93, 105303 (2019); DOI: 10.1016/j.ast.2019.105303.

    Article  Google Scholar 

  30. N. N. Fedorova, O.S. Vankova, and M. A. Goldfeld, “Unsteady Regimes of Hydrogen Ignition and Flame Stabilization in a Channel," Fiz. Goreniya Vzryva 58 (2), 3–11 (2022) [Combust., Expl., Shock Waves 58 (2), 127–134 (2022); DOI: 10.1134/S0010508222020010].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Fedorova.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 5, pp. 33-43.https://doi.org/10.15372/FGV20220505.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, N.N., Goldfeld, M.A. & Pickalov, V.V. Investigation of Oscillation Modes in a High-Speed Flow with Heat Supply. I. Experiment. Combust Explos Shock Waves 58, 536–545 (2022). https://doi.org/10.1134/S0010508222050057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222050057

Keywords

Navigation