Skip to main content
Log in

Temperature Measurement in a Bunsen Gas–Droplet Flame of Ethanol Using OH PLIF

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents the results of two-line OH planar laser-induced fluorescence (PLIF) thermometry in a laminar conical flame of a gas–droplet mixture of ethanol and air. Laminar flow of a droplet-laden ethanol–air uniform mixture was produced by an ultrasonic atomizer in a vessel filled with liquid ethanol. The properties of the two-phase flow at the nozzle exit without combustion were controlled by a time-shift optical sensor. The temperature field was estimated based on the excitation of the \(Q_{1}\)(5) and \(Q_{1}\)(14) lines of the (1–0) band of the \(A^{2}\Sigma ^{ + }\)\(X^{2}\Pi\)electronic system. The spatial nonuniformity of the energy distribution in the laser light sheet illuminating the central plane of the flame cone and the change in the pulse energy from frame to frame were compensated using an additional camera recording the laser light intensity distribution in the calibration cuvette.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. W. A. Sirignano, “Fuel Droplet Vaporization and Spray Combustion Theory," Prog. Energy Combust. Sci. 9 (4), 291–322 (1983); DOI: 10.1016/0360-1285(83)90011-4.

    Article  ADS  Google Scholar 

  2. S. C. Li, “Spray Stagnation Flames," Prog. Energy Combust. Sci. 23 (4), 303–347 (1997); DOI: 10.1016/S0360-1285(96)00013-5.

    Article  Google Scholar 

  3. P. Jenny, D. Roekaerts, and N. N. Beishuize, “Modeling of Turbulent Dilute Spray Combustion," Prog. Energy Combust. Sci. 38 (6), 846–887 (2012); DOI: 10.1016/j.pecs.2012.07.001.

    Article  Google Scholar 

  4. A. R. Masri, “Turbulent Combustion of Sprays: from Dilute to Dense," Combust. Sci. Technol. 188 (10), 1619–1639 (2016); DOI: 10.1080/00102202.2016.1198788.

    Article  Google Scholar 

  5. D. R. Ballal and A. H. Lefebvre, “Ignition and Flame Quenching of Flowing Heterogeneous Fuel–Air Mixtures," Combust. Flame 35, 155–168 (1979); DOI: 10.1016/0010-2180(79)90019-1.

    Article  Google Scholar 

  6. A. M. Danis, I. Namer, and N. P Cernansky, “Droplet Size and Equivalence Ratio Effects on Spark Ignition of Monodisperse n-Heptane and Methanol Sprays," Combust. Flame 74 (3), 285–294 (1988); DOI: 10.1016/0010-2180(88)90074-0.

    Article  Google Scholar 

  7. P. M. De Oliveira, P. M. Allison, and E. Mastorakos, “Ignition of Uniform Droplet-Laden Weakly Turbulent Flows Following a Laser Spark," Combust. Flame 199, 387–400 (2019); DOI: 10.1016/j.Combustflame.2018.10.009.

    Article  Google Scholar 

  8. P. M. De Oliveira and E. Mastorakos, “Mechanisms of Flame Propagation in Jet Fuel Sprays As Revealed by OH/Fuel Planar Laser-Induced Fluorescence and OH* Chemiluminescence," Combust. Flame 206, 308–321 (2019); DOI: 10.1016/j.combustflame.2019.05.005.

    Article  Google Scholar 

  9. S. Hayashi, S. Kumagai, and T. Sakai, “Propagation Velocity and Structure of Flames in Droplet–Vapor–Air Mixtures," Combust. Sci. Technol. 15 (5/6), 169–177 (1977); DOI: 10.1080/00102207708946782.

    Article  Google Scholar 

  10. G. A. Richards and A. H. Lefebvre, “Turbulent Flame Speeds of Hydrocarbon Fuel Droplets in Air," Combust. Flame 78 (3/4), 299–307 (1989); DOI: 10.1016/0010-2180(89)90019-9.

    Article  Google Scholar 

  11. H. Nomura, I. Kawasumi, Y. Ujiie, and J. I. Sato, “Effects of Pressure on Flame Propagation in a Premixture Containing Fine Fuel Droplets," Proc. Combust. Inst. 31 (2), 2133–2140 (2007); DOI: 10.1016/j.proci.2006.07.036.

    Article  Google Scholar 

  12. D. Bradley, M. Lawes, S. Liao, and A. Saat, “Laminar Mass Burning and Entrainment Velocities and Flame Instabilities of i-Octane, Ethanol and Hydrous Ethanol/Air Aerosols," Combust. Flame 161 (6), 1620–1632 (2014); DOI: 10.1016/j.Combustflame.2013.12.011.

    Article  Google Scholar 

  13. J. H. Burgoyne and L. Cohen, “The Effect of Drop Size on Flame Propagation in Liquid Aerosols," Proc. R. Soc. A 225 (1162), 375–392 (1954); DOI: 10.1098/rspa.1954.0210.

    Article  ADS  Google Scholar 

  14. G. Chen and A. Gomez, “Counterflow Diffusion Flames of Quasi-Monodisperse Electrostatic Sprays," Proc. Combust. Inst. 24 (1), 1531–1539 (1992); DOI: 10.1016/S0082-0784(06)80178-5.

    Article  Google Scholar 

  15. N. Darabiha, F. Lacas, J.C. Rolon, and S. Candel, “Laminar Counterflow Spray Diffusion Flames: A Comparison between Experimental Results and Complex Chemistry Calculations," Combust. Flame 95 (3), 261–275 (1993); DOI: 10.1016/0010-2180(93)90131-L.

    Article  Google Scholar 

  16. C. T. Chong and S. Hochgreb, “Measurements of Laminar Flame Speeds of Acetone/Methane/Air Mixtures," Combust. Flame 158 (3), 490–500 (2011); DOI: 10.1016/j.Combustflame.2010.09.019.

    Article  Google Scholar 

  17. L. Fan, B. Tian, C. T. Chong, et al., “The Effect of Fine Droplets on Laminar Propagation Speed of a Strained Acetone–Methane Flame: Experiment and Simulations," Combust. Flame 229, 111377 (2021); DOI: 10.1016/j.Combustflame.2021.02.023.

    Article  Google Scholar 

  18. R. Giezendanner-Thoben, U. Meier, W. Meier, and M. Aigner, “Phase-Locked Temperature Measurements by Two-Line OH PLIF Thermometry of a Self-Excited Combustion Instability in a Gas Turbine Model Combustor," Flow Turbul. Combust. 75 (1–4) 317–333 (2005); DOI: 10.1007/s10494-005-8587-0.

    Article  Google Scholar 

  19. B. Ayoola, G. Hartung, C. A. Armitage, et al., “Temperature Response of Turbulent Premixed Flames to Inlet Velocity Oscillations," Exp. Fluids 46 (1) 27–41 (2009); DOI: 10.1007/s00348-008-0534-0.

    Article  ADS  Google Scholar 

  20. Z. Yang, X. Yu, J. Peng, et al., “Effects of N2, CO2 and H2O Dilutions on Temperature and Concentration Fields of OH in Methane Bunsen Flames by Using PLIF Thermometry and Bi-Directional PLIF," Exp. Therm. Fluid Sci. 81, 209–222 (2017); DOI: 10.1016/j.Expthermflusci.2016.10.017.

    Article  Google Scholar 

  21. B. R. Halls, P. S. Hsu, S. Roy, T. R. Meyer, and J. R. Gord, “Two-Color Volumetric Laser-Induced Fluorescence for 3D OH and Temperature Fields in Turbulent Reacting Flows," Opt. Lett. 43 (12), 2961–2964 (2018); DOI: 10.1364/OL.43.002961.

    Article  ADS  Google Scholar 

  22. J. M. Seitzman, R. K. Hanson, P. A. DeBarber, and C. F. Hess, “Application of Quantitative Two-Line OH Planar Laser-Induced Fluorescence for Temporally Resolved Planar Thermometry in Reacting Flows," Appl. Opt. 33 (18), 4000–4012 (1994); DOI: 10.1364/AO.33.004000.

    Article  ADS  Google Scholar 

  23. E. J. Welle, W. L. Roberts, C. D. Carter, and J. M. Donbar, “The Response of a Propane–Air Counter-Flow Diffusion Flame Subjected to a Transient Flow Field," Combust. Flame 135 (3), 285–297 (2003); DOI: 10.1016/S0010-2180(03)00167-6.

    Article  Google Scholar 

  24. R. Devillers, G. Bruneaux, and C. Schulz, “Development of a Two-Line OH-Laser-Induced Fluorescence Thermometry Diagnostics Strategy for Gas-Phase Temperature Measurements in Engines," Appl. Opt. 47 (31) 5871–5885 (2008); DOI: 10.1364/AO.47.005871.

    Article  ADS  Google Scholar 

  25. S. Kostka et al., “Comparison of Line-Peak and Line-Scanning Excitation in Two-Color Laser-Induced-Fluorescence Thermometry of OH," Appl. Opt. 48 (32), 6332–6343 (2009); DOI: 10.1364/AO.48.006332.

    Article  ADS  Google Scholar 

  26. A. S. Lobasov, R. V. Tolstoguzov, D. K. Sharaborin, L. M. Chikishev, and V. M. Dulin, “On the Efficiency of Using Different Excitation Lines of (1–0) Two-Line OH Fluorescence for Planar Thermometry," Teplofiz. Aeromekh. 28 (5), 793–797 (2021) [Thermophys. Aeromech. 28 (5), 751–755 (2021); https://doi.org/10.1134/S0869864321050176].

    Article  ADS  Google Scholar 

  27. W. Schäfer and C. Tropea, “Time-Shift Technique for Simultaneous Measurement of Size, Velocity, and Relative Refractive Index of Transparent Droplets or Particles in a Flow," Appl. Opt. 53 (4), 588–597 (2014); DOI: 10.1364/AO.53.000588.

    Article  ADS  Google Scholar 

  28. A. S. Lobasov, S. V. Alekseenko, D. M. Markovich, and V. M. Dulin, “Mass and Momentum Transport in the near Field of Swirling Turbulent Jets. Effect of Swirl Rate," Int. J. Heat Fluid Flow 83, 108539 (V); DOI: 10.1016/j.ijheatfluidflow.2020.108539.

    Article  Google Scholar 

  29. J. Luque and D. Crosley, “Lifbase: Database and Spectral Simulation (Version 1.5)," SRI Int. Report No. MP 99-009 (1999).

  30. S. M. Soloff, R. J. Adrian, and Z. C. Liu, “Distortion Compensation for Generalized Stereoscopic Particle Image Velocimetry," Meas. Sci. Technol. 8 (12), 1441–1454 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Sharaborin.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 5, pp. 3-11.https://doi.org/10.15372/FGV20220501.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharaborin, D.K., Lobasov, A.S., Tolstoguzov, R.V. et al. Temperature Measurement in a Bunsen Gas–Droplet Flame of Ethanol Using OH PLIF. Combust Explos Shock Waves 58, 507–515 (2022). https://doi.org/10.1134/S001050822205001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050822205001X

Keywords

Navigation