Skip to main content
Log in

Combustion of Ethylene and Kerosene in a Supersonic Flow at Low Mach Numbers

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Combustion of ethylene and kerosene in flows with Mach numbers M \(\le\) 2 is numerically studied. Flow throttling with the use of a side jet of compressed air is provided for igniting the fuel injected through an axial injector and for supporting its combustion. The Reynolds-averaged Navier–Stokes equations closed with the \(k\)\(\varepsilon\) turbulence model are solved. Fuel combustion is modeled by one reaction. The possibility of formation of a transonic flow is considered. The gas-dynamic structure of the flow in the channel in the case of kerosene combustion is investigated for the Mach number M = 1.7 and stagnation temperatures of 1400 and 1500 K. The computations are performed for various values of the limiter of turbulent kinetic energy generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. V. M. Abashev, A. V. Korabelnikov, A. L. Kuranov, and P. K. Tretyakov, “Increase in the Efficiency of a High-Speed Ramjet on Hydrocarbon Fuel at the Flying Vehicle Acceleration up to M = 6+," AIP Conf. Proc. 1893 (1), 020005 (2017); DOI: 10.1063/1.5007443.

  2. V. P. Zamuraev and A. P. Kalinina, “Intensification Process of Air–Hydrogen Mixture Burning in the Variable Cross Section Channel by Means of the Air Jet," AIP Conf. Proc. 1939 (1), 020054 (2018); DOI: 0.1063/1.5027366.

  3. V. P. Zamuraev and A. P. Kalinina, “Formation of a Transonic Region in a Variable-Section Channel for Different Stagnation Temperatures of the Flow," Teplofiz. Aeromekh. 27 (3), 357–363 (2020) [Thermophys. Aeromech. 27 (3), 339–344 (2020)].

    Article  ADS  Google Scholar 

  4. O. S. Vankova and N. N. Fedorova, “Modeling of Ignition and Combustion of a Coflowing Hydrogen Jet in a Supersonic Air Flow," Fiz. Goreniya Vzryva 57 (4), 18–28 (2021) [Combust., Expl., Shock Waves 57 (4), 398–407 (2021)].

    Article  Google Scholar 

  5. P. K. Tretyakov, V. L. Krainev, A. M. Lazarev, and A. V. Postnov, “Peculiarities of Organization of Effective Hydrocarbon Fuel Combustion in Supersonic Flow," AIP Conf. Proc. 2027 (1), 030029 (2018); DOI: 10.1063/1.5065123.

  6. V. V. Vlasenko, S. S. Molev, V. A. Sabelnikov, and A. I. Troshin, “First Results of Numerical Simulation of Experiments with High-Velocity Combustion of Ethylene in a Channel," in Abstracts of XXXI Conf. on Aerodynamics (TsAGI, 2020), p. 65.

  7. V. P. Zamuraev and A. P. Kalinina, “Control of the Supersonic Flow Structure during Ethylene Combustion with the Use of Gas-Dynamic Pulses," Prikl. Mekh. Tekh. Fiz. 62 (1), 3–13 (2021) [J. Appl. Mech. Tech. Phys. 62 (1), 1–10 (2021); DOI: 10.1134/S0021894421010016].

    Article  ADS  Google Scholar 

  8. P. K. Tretyakov, Initiation of Kerosene Combustion in a Supersonic Air Flow by a Packet of Gas-Dynamic Pulses," Dokl. Akad. Nauk 489 (3), 250–253 (2019).

  9. P. K. Tretyakov, “Organization of Effective Combustion of Kerosene in a Channel at High Flow Velocities," Fiz. Goreniya Vzryva 56 (1), 42–47 (2020) [Combust., Expl., Shock Waves 56 (1), 36–40 (2020); DOI: 10.1134/S0010508220010049].

    Article  Google Scholar 

  10. V. P. Zamuraev and A. P. Kalinina, “Modeling of Kerosene Combustion in a Supersonic Flow under the Action of a Throttling Jet," Prikl. Mekh. Tekh. Fiz. 61 (5), 95–100 (2020) [J. Appl. Mech. Tech. Phys. 61 (5), 763–768 (2020); DOI: 10.1134/S0021894420050107].

    Article  ADS  Google Scholar 

  11. V. P. Zamuraev and A. P. Kalinina, “Deceleration of a Supersonic Flow down to Transonic Speeds Using Gas-Dynamic Pulses during Combustion of Hydrocarbon Fuels," in XX Int. Conf. on the Methods of Aerophysical Research (ICMAR 2020), Novosibirsk, November 1–7, 2020; AIP Conf. Proc. 2351 (1), 030050(6) (2021).

  12. N. N. Fedorova and M. A. Goldfeld, “Effect of the Dynamic Pressure and Molecular Weight of the Gas on Mixing in the Case of Injection of Jets into a Transverse Supersonic Flow," Pisma Zh. Tekh. Fiz. 47 (2), 3–8 (2021).

  13. L. L. Kartovitskii, V. M. Levin, and L. S. Yanovskii, “Analysis of Gas-Dynamic Compression on the Basis of a Modified Model of the Crocco Pseudoshock," Tr. MAI, No. 113, Paper No. 6, 1–27 (2020).

  14. M. Raghavendra Rao, G. Amba Prasad Rao, B. V. N. Charyulu, and Harmeet Singh, “Numerical Studies and Validation of Combustor and Annular Isolator Interactions of Hydrocarbon Based Axisymmetric Dual Combustion Ramjet," Aerospace Sci. Technol. 106, 106185 (2020). DOI: 10.1016/j.ast.2020.106185.

    Article  Google Scholar 

  15. F. R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Application," AIAA J. 32 (8), 1598–1605 (1994). DOI: 10.2514/3.12149.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Zamuraev or A. P. Kalinina.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 4, pp. 63-70.https://doi.org/10.15372/FGV20220407.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamuraev, V.P., Kalinina, A.P. Combustion of Ethylene and Kerosene in a Supersonic Flow at Low Mach Numbers. Combust Explos Shock Waves 58, 450–456 (2022). https://doi.org/10.1134/S0010508222040074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222040074

Keywords

Navigation