Skip to main content
Log in

Laser Ignition of Aluminum and Boron Based Powder Systems

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Powders of various metals and boron are widely used in composite solid propellants to increase the combustion temperature and specific impulse of rocket engines. This paper presents the results of an experimental study of oxidation and ignition of ultrafine Alex aluminum powder, amorphous boron, microsized \(\mu\)Al aluminum powder, and AlB2 and AlB12 aluminum borides in air. Metal and boron powders are heated and ignited by a CO2 laser in a heat flux density range of 65–190 W/cm2. It is revealed on the basis of thermal analysis data that the powder reactivity parameters are arranged in the following sequence (in descending order of activity): Alex \(\to\) B \(\to\) AlB12 \(\to\) AlB2 \(\to\) \(\mu\)Al. The total specific heat release and the mass variation rate reach maximum values during the oxidation of amorphous boron and AlB12 aluminum dodecaboride. The Alex, boron, and AlB12 powders are easier to ignite in air under the action of an external radiant source. The power exponent \(n\) in a dependence between the ignition delay time \(t_\mathrm{ ign}\) and the heat flux density \(t_\mathrm{ ign}(q)\) = \(Aq^{-n}\) for the \(\mu\)Al, AlB2, and AlB12 powders are approximately the same and equal to \(\approx\)2.0, and it is lower and reaches \(n\) = 1.5 and 1.0 for ultrafine Alex and boron powders, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. L. S. Yanovskii et al., “Evaluation of the Performance of Some Metals and Nonmetals in Solid Propellants for Rocket-Ramjet Engines," Fiz. Goreniya Vzryva 56 (1), 81–94 (2020) [Combust., Expl., Shock Waves 56 (1), 71–82 (2020); DOI: 10.1134/S0010508220010098].

    Article  Google Scholar 

  2. L. T. DeLuca, “Overview of Al-based Nanoenergetic Ingredients for Solid Rocket Propulsion," Defence Technol. 14 (5), 357–365 (2018); DOI: 10.1016/j.dt.2018.06.005.

    Article  Google Scholar 

  3. Sh. Chaturvedi and P. N. Dave, “Solid Propellants: AP/HTPB Composite Propellants," Arabian J. Chem. 12 (8), 2061–2068 (2019); DOI: 10.1016/j.arabjc.2014.12.033.

    Article  Google Scholar 

  4. D. S. Sundaram, P. Puri, and V. Yang, “A General Theory of Ignition and Combustion of Nano- and Micron-Sized Aluminum Particles," Combust. Flame 169, 94–109 (2016); DOI: 10.1016/j.combustflame.2016.04.005.

    Article  Google Scholar 

  5. Y. Feng, Z. Xia, L. Huang, and L. Ma, “Ignition and Combustion of a Single Aluminum Particle in Hot Gas Flow," Combust. Flame 196, 35–44 (2018); DOI: 10.1016/j.combustflame.2018.05.010.

    Article  Google Scholar 

  6. A. G. Korotkikh, V. A. Arkhipov, K. V. Slyusarsky, and I. V. Sorokin, “Study of Ignition of High-Energy Materials with Boron and Aluminum and Titanium Diborides," Fiz. Goreniya Vzryva 54 (3), 109–115 (2018) [Combust., Expl., Shock Waves 54 (3), 350–356 (2018); DOI: 10.1134/S0010508218030127].

    Article  Google Scholar 

  7. D. Sundaram, V. Yang, and R. A. Yetter, “Metal-Based Nanoenergetic Materials: Synthesis, Properties, and Applications," Prog. Energy Combust. Sci. 61, 293–365 (2017); DOI: 10.1016/j.pecs.2017.02.002.

    Article  Google Scholar 

  8. A. N. Pivkina, D. B. Meerov, K. A. Monogarov, et al., “Prospects of Using Boron Powders As Fuel. II. Influence of Aluminum and Magnesium Additives and Their Compounds on the Thermal Behavior of Boron Oxide," Fiz. Goreniya Vzryva 56 (2), 28–36 (2020) [Combust., Expl., Shock Waves 56 (2), 148–155 (2020); DOI: 10.1134/S0010508220020057].

    Article  Google Scholar 

  9. W. Ao, Y. Wang, H. Li, et al., “Effect of Initial Oxide Layer on Ignition and Combustion of Boron Powder," Propell., Explos., Pyrotech. 39 (2), 185–191 (2014); DOI: 10.1002/prep.201300079.

    Article  Google Scholar 

  10. A. Ulas, K. K. Kuo, and C. Gotzmer, “Ignition and Combustion of Boron Particles in Fluorine-Containing Environments," Combust. Flame 127 (1–2), 1935–1957 (2001); DOI: 10.1016/S0010-2180(01)00299-1.

    Article  Google Scholar 

  11. A. G. Korotkikh, I. V. Sorokin, K. V. Slyusarskiy, and V. A. Arkhipov, “Ignition of Boron-Containing High-Energy Materials Based on an Oxidizer and Polymer Binder," Zh. Tekh. Fiz. 91 (6), 928–934 (2021) [Tech. Phys. 66, 895–901 (2021)].

    Article  ADS  Google Scholar 

  12. S. A. Hashim, P. K. Ojha, S. Karmakar, et al., “Experimental Observation and Characterization of B–HTPB-Based Solid Fuel with Addition of Iron Particles for Hybrid Gas Generator in Ducted Rocket Applications," Propell., Explos., Pyrotech. 44 (7), 896–907 (2019); DOI: 10.1002/prep.201900009.

    Article  Google Scholar 

  13. Sh. Adil and B. S. Murty, “Effect of Milling on the Oxidation Kinetics of Aluminium + Boron Mixture and Nanocrystalline Aluminium Boride (AlB12)," Thermochim. Acta 678, 178306 (2019); DOI: 10.1016/j.tca.2019.178306.

    Article  Google Scholar 

  14. D. Liang, R. Xiao, J. Liu, and Y. Wang, “Ignition and Heterogeneous Combustion of Aluminum Boride and Boron–Aluminum Blend," Aerospace Sci. Technol. 84, 1081–1091 (2019); DOI: 10.1016/j.ast.2018.11.046.

    Article  Google Scholar 

  15. A. G. Korotkikh and I. V. Sorokin, “Effect of Me/B-Powder on the Ignition of High-Energy Materials," Propell., Explos., Pyrotech. 46 (11), 1709–1716 (2021); DOI: 10.1002/prep.202100180.

    Article  Google Scholar 

  16. A. G. Korotkikh, I. V. Sorokin, E. A. Selikhova, and V. A. Arkhipov, “Ignition and Combustion of Composite Solid Propellants Based on a Double Oxidizer and Boron-Based Additives," Khim. Fiz. 39 (7), 32–40 (2020) [Russ. J. Phys. Chem. B 14, 592–600 (2020); DOI: 10.31857/S0207401X20070080].

    Article  Google Scholar 

  17. V. A. Arkhipov et al., “Ignition of Rotating Samples of High-Energy Materials by Laser Radiation," Fiz. Goreniya Vzryva 57 (1), 90–98 (2021) [Combust., Expl., Shock Waves 57 (1), 83–90 (2021); DOI: 10.1134/S001050822101010X].

    Article  Google Scholar 

  18. W. Ao, Y. Wang, and S. Wu, “Ignition Kinetics of Boron in Primary Combustion Products of Propellant Based on Its Unique Characteristics," Acta Astronaut. 136, 450–458 (2017); DOI: 10.1016/j.actaastro.2017.03.002.

    Article  ADS  Google Scholar 

  19. D. A. Yagodnikov, Sh. L. Guseinov, P. A. Storozhenko, et al., “Morphologic, Chemical, and Spectral Analyses of Combustion Products of Micro- and Nanodispersed Particles of Aluminum Borides," Dokl. Akad. Nauk 484 (1), 44–47 (2019) [Dokl. Chem. 484, 5–7 (2019)].

  20. Sh. L. Guseinov, S. G. Fedorov, A. Yu. Tuzov, S. I. Malashin, A. I. Drachev, M. R. Kiselev, B. V. Pevchenko, and O. V. Voron’ko, “Nanodispersive Aluminum Boride Prepared by a Plasma Recondensation of Aluminum and Boron Micron Powders," Ross. Nanotekhnol. 10 (5/6), 79–85 (2015) [Nanotechnol. Russia 10, 420–427 (2015)].

    Article  Google Scholar 

  21. L. S. Yanovskii, Energy-Consuming Propellants for Aircraft and Rocket Engines (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Korotkikh.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 4, pp. 32-40.https://doi.org/10.15372/FGV20220404.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotkikh, A.G., Sorokin, I.V. & Arkhipov, V.A. Laser Ignition of Aluminum and Boron Based Powder Systems. Combust Explos Shock Waves 58, 422–429 (2022). https://doi.org/10.1134/S0010508222040049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222040049

Keywords

Navigation