Skip to main content
Log in

Thermodynamic Analysis of Compositions of Combustion Products of Radioactive Graphite in Water Vapor or Air

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Distribution of plutonium and americium compounds in the combustion products of radioactive graphite in water vapor or air is analyzed. The study is carried out via thermodynamic analysis using the TERRA software package in a temperature range of 400–3200 K. It is revealed that all carbon in water vapor transitions into gas at temperatures above 900 K, and its transition temperature in air is 1000 K. Condensed plutonium compounds transform into vapor compounds in water vapor at temperatures above 1800 K and in air at 1700 K. Condensed americium compounds begin transforming into a vapor state at temperatures above 2000 K, and their transition temperature in air is 2200 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

REFERENCES

  1. Nuclear Power Reactors in the World; https://www-pub.iaea.org/.

  2. Rosatom: Power Generation; http://www.rosatom.ru.

  3. S. A. Titov, N. M. Barbin, and A. M. Kobelev, “Analysis of Emergency Situations Related to Fires at Nuclear Power Plants," Pozharovzryvobezopasnost’ 30 (5), 66–75 (2021).

    Article  Google Scholar 

  4. N. M. Barbin, S. A. Titov, and A. M. Kobelev, “Accidents that Occurred at Nuclear Power Plants in 1952–1972," IOP Conf. Ser.: Earth Environ. Sci. 666 (2), 022018 (2021); DOI: 10.1088/1755-1315/666/2/022018.

    Article  Google Scholar 

  5. A. N. Dorofeev, E. A. Komarov, E. V. Zakharova, et al., “On Reactor Graphite Disposal," Radioactive Waste, No. 2 (7), 14–23 (2019); DOI: 10.25283/2587-9707-2019-2-18-30.

    Article  Google Scholar 

  6. I. I. Linge and A. A. Abramova, Best Worldwide Practices for Decommissioning Nuclear Plants and Remediating Contaminated Territories (Rosatom, Moscow, 2017) [in Russian].

    Google Scholar 

  7. I. N. Bekman, Plutonium (Moscow State University, Moscow, 2010) [in Russian].

    Google Scholar 

  8. I. N. Bekman, Radiochemistry, Vol. 2: Radioactive Elements (Izdatel’ Markhotin P. Yu., Moscow, 2014) [in Russian].

    Google Scholar 

  9. V. A. Bazhenov, L. A. Buldakov, and I. Ya. Vasilenko, Harmful Chemicals (Khimiya, Leningrad, 1990) [in Russian].

    Google Scholar 

  10. M. A. Skachek, Radioactive Components of Nuclear Power Plants: Handling, Processing, and Localization (Izd. Dom MEI, Moscow, 2014) [in Russian].

    Google Scholar 

  11. L. L. Tsyganov, V. I. Khvostov, E. A. Komarov, et al., “The Problems of Utilizing Graphite of Stopped Graphite–Uranium Reactors," Izv. Tomsk. Politekh. Univ. 310 (2), 94–98 (2007) [Bull. Tomsk Polytech. Univ. 310 (2), 88–92 (2007)].

    Google Scholar 

  12. N. A. Vatolin, G. K. Moiseev, and B. G. Trusov, Thermodynamic Modeling in High Temperature Systems (Metallurgiya, Moscow, 1994) [in Russian].

    Google Scholar 

  13. N. M. Barbin, A. M. Kobelev, D. I. Terent’ev, and S. G. Alekseev, “Thermodynamic Modeling of Thermal Processes Involving Actinides (U, Am, Pu) in the Course of Heating Radioactive Graphite in Steam," Radiokhimiya 59 (5), 445–448 (2017) [Radiochemistry 59 (2), 507–511 (2017)].

    Article  Google Scholar 

  14. G. V. Belov, Thermodynamic Modeling (Nauchnyi Mir, Moscow, 2002) [in Russian].

    Google Scholar 

  15. G. V. Belov and B. G. Trusov, Thermodynamic Modeling of Chemically Reacting Systems (Bauman Moscow State Technical University, Moscow, 2013) [in Russian].

    Google Scholar 

  16. Thermodynamic Properties of Individual Substances. Ivtanthermo Database; http://www.chem.msu.su/ rus/handbook/ivtan.

  17. G. V. Belov, S. A. Dyachkov, P. R. Levashov, et al., “The IVTANTHERMO-Online Database for Thermodynamic Properties of Individual Substances," J. Phys.: Conf. Ser. 946, 012120 (2018); DOI: 10.1088/1742-6596/946/1/012120.

    Article  Google Scholar 

  18. Thermodynamic Properties of Individual Substances: Digital Manual; http://twt.mpei.ac.ru/TTHB/2/ OIVT/IVTANThermo/Rus/index.htm#open1.

  19. O. Dorofeeva, V. P. Novikov, and D. B. Neumann, “NIST-JANAF Thermochemical Tables. I. Ten Organic Molecules Related to Atmospheric Chemistry," J. Phys. Chem. Ref. Data 30 (2), 475–513 (2001); DOI: 10.1063/1.1364518.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Barbin.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 4, pp. 24-31.https://doi.org/10.15372/FGV20220403.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbin, N.M., Kobelev, A.M., Titov, S.A. et al. Thermodynamic Analysis of Compositions of Combustion Products of Radioactive Graphite in Water Vapor or Air. Combust Explos Shock Waves 58, 415–421 (2022). https://doi.org/10.1134/S0010508222040037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222040037

Keywords

Navigation