Skip to main content
Log in

Generation of Thermal Electromotive Force during Combustion of Mixtures of Ti + xB

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The generation of thermal electromotive force (EMF) during combustion of titanium and boron powder mixtures under pressure has been studied. It has been shown that when the boron content in the mixture is less than 2.5 mole, thermal EMF is generated in the form of a constant positive signal, at 22.5 \(<\) B \(<\) 4.0 mole, it is generated in the form of a constant negative signal, and at B \(>\) 4.0 mole, in the form of a negative pulse. The generation of the positive signal is due to the electronic conductivity of titanium particles, and the generation of the negative signal is due to the hole conductivity of boron particles. Experimental dependences of the maximum temperature, average burning velocity, the width of the combustion wave, and thermal EMF on the mole fraction of boron in the mixture have been obtained. It has been shown that the greatest width of the combustion wave is about 10 mm, and its minimum (critical) width is 1 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Yu. G. Morozov, M. V. Kuznetsov, M. D. Nersesyan, and A. G. Merzhanov, “Electrochemical Phenomena in the Processes of Self-Propagating High-Temperature Synthesis," Dokl. Akad. Nauk 351 (6), 780–782 (1996).

    Google Scholar 

  2. Yu. G. Morozov, M. V. Kuznetsov, and A. G. Merzhanov, “Nonthermal Effects of Electric Field on the Self-Propagating High-Temperature Synthesis," Dokl. Akad. Nauk 352 (6), 771–773.

  3. Yu. G. Morozov, M. V. Kuznetsov, and A. G. Merzhanov, “Electric Fields in the Processes of Self-Propagating High-Temperature Synthesis," Int. J. Self-Propag. High-Temp. Synth. 6 (1), 1–13 (1997).

    Google Scholar 

  4. M. D. Nersesyan, J. R. Claycomb, J. T. Ritchie, J. H. Miller (Jr.), J. T. Richardson, and D. Luss, “Electric and Magnetic Fields Generated by SHS," J. Mater. Synth. Process. 9 (2), 63–72 (2001).

    Article  Google Scholar 

  5. Yu. G. Morozov and M. V. Kuznetsov, “Dynamic Ionography of SHS Processes," Khim. Fiz. 20 (11), 34–39 (2001).

    Google Scholar 

  6. Yu. M. Maksimov, V. I. Itin, V. K. Smolyakov, and A. I. Kirdyashkin, “SHS in Electric and Magnetic Fields," Int. J. Self-Propag. High-Temp. Synth. 10 (3), 295–329 (2002).

    Google Scholar 

  7. Yu. G. Morozov and M. V. Kuznetsov, “Origin of the Electromotive Force due to Combustion," Khim. Fiz. 19 (11), 98–104 (2000).

    Google Scholar 

  8. I. A. Filimonov and N. I. Kidin, “High-Temperature Combustion Synthesis: Generation of Electromagnetic Radiation and the Effect of External Electromagnetic Fields (Review)," Fiz. Goreniya Vzryva 41 (6), 34–53 (2005) [Combust., Expl., Shock Waves 41 (6), 639–656 (2005); https://doi.org/10.1007/s10573-005-0078-z].

    Article  Google Scholar 

  9. B. K. Smolyakov, A. I. Kirdyashkin, and Yu. M. Maksimov, “On the Theory of Electrical Phenomena in Combustion of Heterogeneous Systems with Condensed Products," Fiz. Goreniya Vzryva 38 (6), 76–82 (2002) [Combust., Expl., Shock Waves 38 (6), 675–680 (2002); https://doi.org/10.1023/A:1021144428548].

    Article  Google Scholar 

  10. Yu. M. Maksimov, A. I. Kirdyashkin, V. S. Korogodov, and V. L. Polyakov, “Generation and Transfer of an Electric Charge in Self-Propagating High-Temperature Synthesis Using the Co–S System As an Example," Fiz. Goreniya Vzryva 36 (5), 130–133 (2000) [Combust., Expl., Shock Waves 36 (5), 670–673 (2000); https://doi.org/10.1007/BF02699532].

    Article  Google Scholar 

  11. A. I. Kirdyashkin, V. L. Polyakov, Yu. M. Maksimov, and V. S. Korogodov, “Specific Features of Electrical Phenomena in Self-Propagating High-Temperature Synthesis," Fiz. Goreniya Vzryva 40 (2), 61–67 (2004) [Combust., Expl., Shock Waves 40 (2), 180–185 (2004); https://doi.org/10.1023/B:CESW.0000020140.44698.f7].

    Article  Google Scholar 

  12. Yu. M. Maksimov, A. I. Kirdyashkin, R. M. Gabbasov, and V. G. Salamatov, “Emission Phenomena in a SHS Combustion Wave," Fiz. Goreniya Vzryva 45 (4), 121–127 (2009) [Combust., Expl., Shock Waves 45 (4), 454–460 (2009); https://doi.org/10.1007/s10573-009-0056-y.]

    Article  Google Scholar 

  13. V. A. Shcherbakov and V. Yu. Barinov, “SHS under Pressure: I. Thermal Electromotive Force Arising during Combustion of Ti + C Mixtures," Int. J. Self-Propag. High-Temp. Synth. 20 (1), 33–35 (2011).

    Article  Google Scholar 

  14. V. A. Shcherbakov and V. Yu. Barinov, “SHS Under Pressure: II. Effect of Applied Pressure on Burning Velocity in Ti + C Mixtures," Int. J. Self-Propag. High-Temp. Synth. 20 (1), 36–39 (2011).

    Article  Google Scholar 

  15. V. A. Shcherbakov and V. Yu. Barinov, “Measurement of Thermal Electromotive Force and Determination of Combustion Parameters of a Mixture of 5Ti + 3Si under Conditions of Quasi-Isostatic Compression," Fiz. Goreniya Vzryva 53 (2), 39–46 (2017) [Combust., Expl., Shock Waves 53 (2), 157–164 (2017); https://doi.org/10.1134/S0010508217020058].

    Article  Google Scholar 

  16. V. F. Proskudin, “Electromotive Force of Solid-Flame Combustion of Heterogeneous Systems in Loose and Pressed States," Fiz. Goreniya Vzryva 42 (4), 71–77 (2006) [Combust., Expl., Shock Waves 42 (4), 430–435 (2006); https://doi.org/10.1007/s10573-006-0072-0].

    Article  Google Scholar 

  17. C. Wagner and W. Schottky, “Theorie der Geordneten Mischphasen," Z. Phys. Chem. B11, 163–210 (1930).

    Google Scholar 

  18. H. Schmalzried, Chemical Kinetics of Solids (VCH, Weinheim, 1995).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shcherbakov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 1, pp. 62-69.https://doi.org/10.15372/FGV20220106.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakov, V.A., Barinov, V.Y. Generation of Thermal Electromotive Force during Combustion of Mixtures of Ti + xB. Combust Explos Shock Waves 58, 54–61 (2022). https://doi.org/10.1134/S0010508222010063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222010063

Keywords

Navigation