Skip to main content
Log in

High-Temperature Combustion Synthesis: Generation of Electromagnetic Radiation and the Effect of External Electromagnetic Fields (Review)

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

A critical review of recent papers on mechanisms of generation of internal electromagnetic fields and the action of external electromagnetic fields on self-propagating high-temperature synthesis of heterogeneous systems is presented. Generation of an internal electromagnetic field is caused by different rates of diffusion of charged defects through the layer of the growing product in strongly nonequilibrium reactions. Possible emergence of residual magnetic fields is related to orientation of magnetic domains in the arising internal thermal and electromagnetic fields of the synthesis wave. The external electromagnetic action is characterized by thermal, magneto- and electrodynamic, and kinetic factors. The thermal factor is caused by the Joule effect, whereas the electro- and magnetodynamic influence is caused by electromigration, magnetic compression and changes in electrical conductivity of the condensed phase, and ion wind in the gas in pores. The kinetic factor is caused by generation of superequilibrium charge carriers in condensed particles (defects) and by emission of high-energy electrons into the gas surrounding the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. M. Stepanov and B. G. D'yachkov, Flame Ionization in an Electric Field [in Russian], Metallurgiya, Moscow (1968).

    Google Scholar 

  2. J. Lawton and F. Weinberg, Electrical Aspects of Combustion, Clarendon, Oxford (1969).

    Google Scholar 

  3. N. I. Kidin and V. B. Librovich, “Flame in an electromagnetic field,” Energiya, No. 9, 10–16 (1985).

  4. A. G. Merzhanov, Solid-Flame Combustion [in Russian], Inst. Struct. Macrokinet., Russian Acad. of Sci., Chernogolovka (2000).

    Google Scholar 

  5. Yu. M. Maksimov, V. I. Itin, V. K. Smolyakov, and A. I. Kirdyashkin, “SHS in electric and magnetic fields,” Int. J. SHS, No. 3, 295–329 (2001).

    Google Scholar 

  6. N. I. Kidin and V. B. Librovich, “The intrinsic electric field in a laminar flame,” Combust., Expl., Shock Waves, 10, No.5, 617–625 (1974).

    Google Scholar 

  7. N. I. Kidin and G. M. Makhviladze, “Electric field of laminar flame with high degree of ionization,” Combust., Expl., Shock Waves, 12, No.6, 763–767 (1976).

    Google Scholar 

  8. I. A. Filimonov and D. Luss, “Formation of electric potential during the oxidation of a metal particle,” AIChE J., 50, No.9, 2287–2296 (2004).

    Article  Google Scholar 

  9. A. G. Merzhanov, S. O. Mkrtchyan, M. D. Nersesyan, et al., “Magnetic field induced by the SHS process,” Dokl. Akad. Nauk Resp. Armeniya, 93, No.2, 81–83 (1992).

    Google Scholar 

  10. P. B. Avakyan, M. D. Nersesyan, and A. G. Merzhanov, “New materials for electronic engineering,” Amer. Ceram. Soc. Bull., 75, No.2, 50–55 (1996).

    Google Scholar 

  11. M. D. Nersesyan, J. R. Claycomb, Q. Ming, et al., “Chemomagnetic fields produced by solid combustion reaction,” Appl. Phys. Lett., 75, No.8, 1170–1172 (1999).

    Article  ADS  Google Scholar 

  12. J. R. Claycomb, W. LeGrand, J. H. Miller, Jr., et al., “Chemomagnetic characterization of chemical reactions using high-T c SQUIDs,” Phisica C, 34, 2641–2644 (2000).

    Google Scholar 

  13. M. D. Nersesyan, D. Luss, J. R. Claycomb, et al., “Magnetic fields produced by the combustion of metals in oxygen,” Combust. Sci. Technol., 169, 89–106 (2001).

    Google Scholar 

  14. M. D. Nersesyan, J. R. Claycomb, J. T. Ritchie, et al., “Electric and magnetic fields generated by SHS,” J. Mater. Synth. Process., 9, No.2, 63–72 (2001).

    Article  Google Scholar 

  15. K. S. Martirosyan, J. R. Claycomb, G. Gogoshin, et al., “Spontaneous magnetization generated by spin, pulsating and planar combustion synthesis,” J. Appl. Phys. 93, No.11, 9329–9335 (2003).

    Article  ADS  Google Scholar 

  16. K. S. Martirosyan, J. R. Claycomb, J. H. Miller, Jr., and D. Luss, “Generation of transient electrical and spontaneous magnetic fields by solid state combustion,” J. Appl. Phys., 96, No.8, 4632–4636 (2004).

    Article  ADS  Google Scholar 

  17. Yu. G. Morozov, M. V. Kuznetsov, M. D. Nersesyan, and A. G. Merzhanov, “Electrochemical phenomena in processes of self-propagating high-temperature synthesis,” Dokl. Ross. Akad. Nauk, 351, No.6, 780–782 (1996).

    Google Scholar 

  18. M. V. Kuznetsov, Yu. G. Morozov, and A. G. Merzhanov, “Influence of non-thermal effects of the electric field on processes of self-propagating high-temperature synthesis,” Dokl. Ross. Akad. Nauk, 352, No.6, 771–773 (1997).

    Google Scholar 

  19. Yu. G. Morozov, M. V. Kuznetsov, and A. G. Merzhanov, “Electric fields in the processes of self-propagating high-temperature synthesis,” Int. J. SHS, 6, No.1, 1–13 (1997).

    Google Scholar 

  20. K. S. Martirosyan, I. A. Filimonov, M. D. Nersesyan, and D. Luss, “Electric field formation during combustion of single metal particles,” J. Electrochem. Soc., 150, No.5, J9–J16 (2003).

    Article  Google Scholar 

  21. K. S. Martirosyan, I. A. Filimonov, and D. Luss, “New measuring techniques of electric field generated by combustion synthesis,” Int. J. SHS, 11, No.4, 325–333 (2002).

    Google Scholar 

  22. M. D. Nersesyan, J. T. Ritchie, I. A. Filimonov, et al., “Electric fields produced by high-temperature metal oxidation,” J. Electrochem. Soc., 149, No.1, J11–J17 (2002).

    Article  Google Scholar 

  23. Yu. M. Maksimov, A. I. Kirdyashkin, V. S. Korogodov, and V. L. Polyakov, “Generation and transfer of an electric charge in self-propagating high-temperature synthesis using the Co-S system as an example,” Combust., Expl., Shock Waves, 36, No.5, 670–673 (2000).

    Google Scholar 

  24. V. K. Smolyakov, A. I. Kirdyashkin, and Yu. M. Maksimov, “On the theory of electrical phenomena in combustion of heterogeneous systems with condensed products,” Combust., Expl., Shock Waves 38, No.6, 675–680 (2002).

    Article  Google Scholar 

  25. K. S. Martirosyan, I. A. Filimonov, and D. Luss, “Self-heating by Joule dissipation during gas-solid combustion reactions,” Int. J. SHS, 12, No.2, 91–98 (2003).

    Google Scholar 

  26. K. S. Martirosyan, I. A. Filimonov, and D. Luss, “Electric field generation by gas-solid combustion,” AIChE J. 50, No.1, 241–248 (2004).

    Article  Google Scholar 

  27. I. A. Filimonov and D. Luss, “High-temperature oxidation of a metal particle: Nonisothermal model,” AIChE J. 51, No.5, 1521–1575 (2005).

    Article  Google Scholar 

  28. I. A. Filimonov and D. Luss, “Electrical field formation during the oxidation of a metal particle,” AIChE J. 50, No.9, 2287–2296 (2004).

    Article  Google Scholar 

  29. C. Wagner, “Uber den Zusammenhang zwishen ionen Beweglichkeit und Diffusionsgeschwindigkeit in festen Salzen,” Z. Phys. Chem., B11, 139–151 (1931).

    Google Scholar 

  30. C. Wagner, “Beitrag zur Theorie des Anlaufvorgangs,” Z. Phys. Chem., B21, 25–41 (1933).

    Google Scholar 

  31. C. Wagner, “Equations for transport in solid oxides and sulfides of transition metals,” Prog. Solid State Chem. 10, No.1, 3–16 (1975).

    Google Scholar 

  32. O. Levenspiel, Chemical Reaction Engineering, John Wiley, New York (1972).

    Google Scholar 

  33. I. A. Filimonov and N. I. Kidin, “Effect of electric current on SHS-process with complete transformation in wave front,” Combust. Sci. Technol., 112, 15–34 (1996).

    Google Scholar 

  34. A. S. Steinberg and V. A. Knyazik, “Macrokinetics of high-temperature heterogeneous reaction: SHS aspects,” Pure Appl. Chem., 64, No.7, 965–976 (1992).

    Google Scholar 

  35. V. A. Knyazik and A. S. Steinberg, “Laws of the thermal explosion in a system with additional (non-chemical) sources of heat,” Dokl. Ross. Akad. Nauk, 328, No.5, 580–584 (1993).

    Google Scholar 

  36. K. V. Popov, V. A. Knyazik, and A. S. Shteinberg, “Study of high-temperature reaction of Ti with B by the method of electrothermal explosion,” Combust., Expl., Shock Waves, 29, No.1, 77–81 (1993).

    Article  Google Scholar 

  37. V. A. Knyazik and A. S. Steinberg, “High-temperature interaction in the Ta-C system under electrothermal explosion conditions,” J. Mater. Synth. Process., 1, No.2, 85–92 (1993).

    Google Scholar 

  38. O. Yamada, Yu. Miyamoto, and M. Koizuimi, “Self-propagating high-temperature synthesis of silicon carbide,” J. Mater. Res., 1, No.2, 275–279 (1986).

    ADS  Google Scholar 

  39. A. G. Merzhanov, I. P. Borovinskaya, A. S. Steinberg, et al., “Method of obtaining refractory compositions,” USSR Inventor's Certificate No. 484052, Byul. Izobr. No. 46 (1977).

  40. V. Ya. Belousov, L. D. Lutsak, A. V. Pilipchenko, and Yu. D. Lukan, “Method of hot pressing of solid-alloy materials,” USSR Inventor's Certificate No. 1560404, Byul. Izobr., No. 16 (1988).

  41. V. Ya. Belousov, A. V. Pilipchenko, and L. D. Lutsak, “Some features of initiation of SHS synthesis under direct electric heating,” Poroshk. Metallurg., No. 10, 65–68 (1988).

  42. Adami Seidzi, Vada Takahiro, and Mihara Toshiro, “The method of manufacturing of ceramics or cermet,” Kokay Tokko Koho, 37, No.1, 475–477 (1988); Application of Japan No. 63170272.

    Google Scholar 

  43. A. G. Merzhanov, I. P. Borovinskaya, A. S. Steinberg, et al., “Method of connecting materials,” USSR Inventor's Certificate No. 747661, Byul. Izobr., No. 26 (1980).

  44. V. E. Ermakov, V. Yu. Nadein, G. A. Kulakov, et al., “Method of connecting materials in the Author's Certificate No. 747661,” USSR Inventor's Certificate No. 1148745, Byul. Izobr., No. 13 (1985).

  45. V. A. Scherbakov and A. S. Steinberg, “SHS welding of refractory materials,” Int. J. SHS, 2, No.4, 357–369 (1993).

    Google Scholar 

  46. V. Ya. Fedyanin and S. F. Dmitriev, “Method of obtaining coatings on the basis of a nickel-aluminum contact,” USSR Inventor's Certificate No. 1420069, Byul. Izobr., No. 32 (1988).

  47. G. L. Burenkov, A. I. Raichenko, and A. F. Khrienko, “Surface melting of metals by means of reaction synthesis of powder compounds by an electric discharge,” Elektron. Obrab. Mater., No. 1, 34–37 (1981).

    Google Scholar 

  48. A. I. Raichenko, Fundamentals of Powder Sintering by Electric Current [in Russian], Metallurgiya, Moscow (1987).

    Google Scholar 

  49. S. A. Balankin, V. S. Sokolov, A. O. Troitskii, and D. M. Mishchenko, “Thermosynthesis under conditions of pulsed heating,” Inzh.-Fiz. Zh., 65, No.4, 419–422 (1993).

    Google Scholar 

  50. N. A. Kochetov, A. S. Rogachev, A. N. Emel'yanov, et al., “Microstructure of heterogeneous mixtures for gasless combustion,” Combust., Expl., Shock Waves, 40, No.5, 564–570 (2004).

    Article  Google Scholar 

  51. A. I. Kirdyashkin, Yu. M. Maksimov, V. D. Kitler, et al., “Electroimpulsive activation of self-propagating high-temperature synthesis in powder mixtures,” Combust., Expl., Shock Waves, 36, No.4, 540–542 (2000).

    Google Scholar 

  52. Z. A. Munir, W. Lai, and K. H. Ewald, “Field assisted combustion synthesis,” U. S. Patent No. 5380409, January 10 (1995).

  53. Z. A. Munir, I. J. Shon, and K. Yamazaki, “Simultaneous synthesis and densification by field-activated combustion,” U. S. Patent No. 5794113, August 11 (1998).

  54. Z. A. Munir, F. Charlot, F. Bernard, and E. Gaffet, “One-step synthesis and consolidation of nanophase materials,” U. S. Patent No. 6200515, March 13 (2001).

  55. I. A. Filimonov and N. I. Kidin, “SHS-process in external electric fields,” in: Proc. 24th Symp. (Int) on Combustion, The Combustion Inst., Pittsburgh (1992), pp. 1893–1898.

    Google Scholar 

  56. F. Magila, U. Anselmi-Tamburini, N. Bertolino, et al., “Field-activated combustion synthesis of Ta-Si intermetallic compounds,” J. Mater. Res., 16, No.2, 534–544 (2001).

    ADS  Google Scholar 

  57. R. Orru, J. Woolman, G. Cao, and Z. A. Munir, “Synthesis of dense nanometric MoSi2 through mechanical and field activation,” J. Mater. Res., 16, No.5, 1439–1448 (2001).

    ADS  Google Scholar 

  58. O. A. Graeve and Z. A. Munir, “Electric field enhanced synthesis of nanostructured tantalum carbide,” J. Mater. Res., 17, No.3, 603–609 (2002).

    Google Scholar 

  59. C. Gras, F. Bernard, F. Charlot, et al., “Simultaneous synthesis and consolidation of nanostructured MoSi2,” ibid., pp. 542–549.

  60. R. Orru, A. Cincotti, G. Cao, and Z. A. Munir, “Mechanistic investigation of electric field-activated self-propagating reactions: experimental and modeling studies,” Chem. Eng. Sci., 56, 683–692 (2001).

    Google Scholar 

  61. A. Feng and Z. A. Munir, “The effect of an electric field on self-sustaining combustion synthesis: Part I. Modeling studies,” Metallurg. Mater. Trans. B, 26B, 581–586 (1995).

    Google Scholar 

  62. A. Feng, O. A. Graeve, and Z. A. Munir, “Modeling solution for electric field-activated combustion synthesis,” Comput. Mater. Sci., 12, 137–155 (1998).

    Article  Google Scholar 

  63. E. M. Carrillo-Heian, O. A. Graeve, A. Feng, et al., “Modeling studies of the effect of thermal and electrical conductivities and relative density of field-activated self-propagating combustion synthesis,” J. Mater. Res., 14, No.5, 1949–1958 (1999).

    ADS  Google Scholar 

  64. O. A. Graeve, E. M. Carrillo-Heian, A. Feng, and Z. A. Munir, “Modeling of wave configuration during electrically ignited combustion synthesis,” J. Mater. Res., 16, No.1, 93–100 (2001).

    ADS  Google Scholar 

  65. N. I. Kidin and I. A. Filimonov, “Self-propagating high-temperature synthesis as a method for producing composite materials under conditions of the Joule dissipation of energy,” Mekh. Kompoz. Mater., No. 6, 1106–1112 (1990).

    Google Scholar 

  66. N. I. Kidin and I. A. Filimonov, “An SHS process in an external electric field,” Int. J. SHS, 1, No.4, 513–519 (1992).

    Google Scholar 

  67. G. K. Shkadinskii, B. I. Khaikin, and A. G. Merzhanov, “Propagation of a pulsating exothermic reaction front in the condensed phase,” Combust., Expl., Shock Waves, 7, No.1, 15–22 (1971).

    Google Scholar 

  68. O. V. Ushakovskii, S. I. Khudyaev, and A. S. Steinberg, “Analysis of combustion regimes with additional (non-chemical) sources of heat,” Khim. Fiz., 7, No.10, 1400–1407 (1988).

    Google Scholar 

  69. R. C. Dalton, I. Ahmad, and D. E. Clark, “Combustion synthesis using microwave energy,” Ceram. Eng. Sci. Proc., 11, Nos. 9–10, 1729–1742 (1990).

    Google Scholar 

  70. D. E. Clark, I. Ahmad, and R. C. Dalton, “Microwave ignition and combustion synthesis of composites,” Mater. Sci. Eng., A144 (Complete), 91–97 (1991).

    Google Scholar 

  71. P. Komarenko and D. E. Clark, “Synthesis of Ti3SiC2-based materials using microwave-initiated SHS,” Ceram. Eng. Sci. Proc., 15, No.5, 1028–1035 (1994).

    Google Scholar 

  72. A. I. Trofimov and V. I. Yukhvid, “Effect of an electromagnetic field on the combustion of a Ti + C system,” Combust., Expl., Shock Waves, 29, No.1, 66–67 (1993).

    Article  Google Scholar 

  73. A. I. Trofimov, V. I. Yukhvid, and I. P. Borovinskaya, “Combustion of condensed system in external electromagnetic field,” Int. J. SHS, 1, No.1, 67–71 (1992).

    Google Scholar 

  74. A. I. Trofimov and V. I. Yukhvid, “SHS surfacing in an electromagnetic field,” Int. J. SHS, 2, No.4, 343–348 (1993).

    Google Scholar 

  75. D. Kata, M. Ohyanagi, and Z. A. Munir, “Induction-field-activated self-propagating high-temperature synthesis of AlN-SiC solid solutions in the Si3N4-Al-C system,” J. Mater. Res., 15, No.11, 2514–2525 (2000).

    ADS  Google Scholar 

  76. S. Gedevanishvili, D. Agrawal, and R. Roy, “Microwave combustion synthesis and sintering of intermetallics and alloys,” J. Mater. Sci. Lett., 18, No.9, 665–668 (1999).

    Article  Google Scholar 

  77. B. Vaidhyanathan, D. Agrawal, and R. Roy, “Novel synthesis of nitride powders by microwave-assisted combustion,” J. Mater. Res., 15, No.4, 974–981 (2000).

    ADS  Google Scholar 

  78. I. A. Filimonov and N. I. Kidin, “The influence of an electromagnetic field on the SHS process in the spin mode,” Int. J. SHS, 3, No.2, 143–154 (1994).

    Google Scholar 

  79. I. A. Filimonov and N. I. Kidin, “The effect of heat removal on the spin mode of SHS in an external electromagnetic field,” Int. J. SHS, 3, No.3, 197–206 (1994).

    Google Scholar 

  80. S. E. Zakiev and K. G. Shkadinskii, “Thermal effect of high-frequency electromagnetic radiation on the high-temperature synthesis front,” Khim. Fiz., 17, No.10, 107–115 (1998).

    Google Scholar 

  81. S. E. Zakiev, “The effect of radio frequency heating on self-propagating high-temperature synthesis,” Int. J. SHS, 8, No.1, 1–11 (1999).

    Google Scholar 

  82. S. E. Zakiev and K. G. Shkadinskii, “Electromagnetic field in chemically active media with significantly varying electrophysical properties,” Khim. Fiz., 19, No.1, 95–102 (2000).

    Google Scholar 

  83. O. K. Kamynina, N. I. Kidin, V. A. Kudryashov, et al., “Ionization in a combustion wave,” Combust., Expl., Shock Waves, 38, No.4, 446–448 (2002).

    Article  Google Scholar 

  84. I. S. Grigor'ev and E. Z. Meilikhov (eds.), Physical Quantities [in Russian], Atomizdat, Moscow (1991).

    Google Scholar 

  85. A. I. Kirdyashkin, Yu. M. Maksimov, and A. G. Merzhanov, “Effect of a magnetic field on the combustion of heterogeneous systems with condensed reaction products,” Combust., Expl., Shock Waves, 22, No.6, 700–706 (1986).

    Google Scholar 

  86. A. I. Kirdyashkin, Yu. M. Maksimov, V. D. Kitler, et al., “Formation of self-propagating high-temperature synthesis products in a magnetic field,” Combust., Expl., Shock Waves, 35, No.3, 271–274 (1999).

    Google Scholar 

  87. A. V. Komarov, Yu. G. Morozov, P. V. Avakyan, and M. D. Nersesyan, “Influence of a DC magnetic field on structuration and parameters of self-propagating high-temperature synthesis of strontium hexoferrite,” Int. J. SHS, 3, No.3, 207–212 (1994).

    Google Scholar 

  88. Yu. G. Morozov, “Properties of lithium ferrites prepared by combustion synthesis in a magnetic field,” Inorg. Mater., 35, No.4, 489–491 (1999).

    Google Scholar 

  89. M. V. Kuznetsov, L. Fernandez-Barquin, Q. A. Pankhurst, et al., “Self-propagating high-temperature synthesis of barium-chromium ferrites BaFe12−x Cr x O19 (0 ⩽ x ⩽ 0.6),” J. Phys., D: Appl. Phys., 32, 2590–2598 (1999).

    Article  ADS  Google Scholar 

  90. L. Fernandez-Barquin, M. V. Kuznetsov, Yu. G. Morozov, et al., “Combustion synthesis of chromium-substituted lithium ferrites Li0.5Fe2.5−x Cr x O4 (x ⩽ 2.0),” Int. J. Inorg. Mater., No. 1, 311–316 (1999).

    Google Scholar 

  91. M. V. Kuznetsov, Q. A. Pankhurst, I. P. Parkin, et al., “Self-propagating high-temperature synthesis of yttrium iron chromium garnets Y3Fe5−x Cr x O12 (0 ⩽ x ⩽ 0.6),” J. Mater. Chem., No. 10, 755–760 (2000).

    Google Scholar 

  92. M. V. Kuznetsov and Yu. G. Morozov, “Peculiarities of magnetic states of ferrites, synthesized in a magnetic field,” Phys. Chem. Mater. Treatment, No. 2, 61–66 (2000).

  93. Yu. Dolinsky and T. Elperin, “Melting dynamics in current-carrying conductors and its effect on electrodynamics characteristics,” J. Appl. Phys., 78, No.4, 2253–2259 (1995).

    Article  ADS  Google Scholar 

  94. Yu. Dolinsky and T. Elperin, “Peculiarities of coexistence of phases with different electric conductivities under the influence of electric current,” Mater. Sci. Eng., A287, 219–226 (2000).

    Google Scholar 

  95. N. Bertolino, G. Garay, U. Anselmi-Tamburini, and Z. A. Munir, “Electromigration effects in Al-Au multilayers,” Scripta Mater., 44, 737–742 (2001).

    Google Scholar 

  96. S. Chen, C. Chen, and W. Liu, “Electromigration effects,” J. Electron. Mater., 28, No.7, 902–908 (1999).

    Google Scholar 

  97. P. Asoka-Kumar, K. O'Brien, K. G. Lynn, et al., “Detection of current-induced vacancies in thin aluminum-copper lines using positrons,” Appl. Phys. Lett., 68, No.3, 406–408 (1996).

    Article  ADS  Google Scholar 

  98. K. P. Gurov and A. M. Gusak, “Theory of phase growth in the diffusion zone in the case of mutual diffusion in an external electric field,” Fiz. Mat. Mekh., 52, No.4, 767–773 (1981).

    Google Scholar 

  99. I. M. Kotin, “Influence of constant electric field on self-propagating high-temperature synthesis wave,” Combust., Expl., Shock Waves, 30, No.5, 626–629 (1994).

    Google Scholar 

  100. I. M. Kotin, “Effect of a constant electric field on the SHS combustion wave,” Inzh.-Fiz. Zh., 70, No.5, 790–794 (1997).

    Google Scholar 

  101. A. P. Aldyshin, “Filtration combustion of metals,” in: Yu. Sh. Matros (ed.), Propagation of Heat Waves in Heterogeneous Media [in Russian], Nauka, Novosibirsk (1988), pp. 52–71.

    Google Scholar 

  102. I. A. Filimonov, N. I. Kidin, and A. S. Mukasyan, “The influence of infiltration and reactant gas pressure on spin combustion in a gas-solid system,” Int. J. SHS, 10, No.2, 151–176 (2001).

    Google Scholar 

  103. A. I. Kirdyashkin, Yu. M. Maksimov, V. S. Korogodov, and V. L. Polyakov, “Nonequilibrium electrophysical phenomena in processes of self-propagating high-temperature synthesis,” Dokl. Ross. Akad. Nauk, 381, No.1, 66–68 (2001).

    Google Scholar 

  104. A. I. Kirdyashkin, V. L. Polyakov, Yu. M. Maksimov, and V. S. Korogodov, “Specific features of electric phenomena in self-propagating high-temperature synthesis,” Combust., Expl., Shock Waves, 40, No.2, 180–185 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 41, No. 6, pp. 34–53, November–December, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filimonov, I.A., Kidin, N.I. High-Temperature Combustion Synthesis: Generation of Electromagnetic Radiation and the Effect of External Electromagnetic Fields (Review). Combust Explos Shock Waves 41, 639–656 (2005). https://doi.org/10.1007/s10573-005-0078-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-005-0078-z

Key words

Navigation