Skip to main content
Log in

Effect of Compression Pressure on Combustion of Tapes Obtained by Rolling a Ti + 1.7B Powder Mixture

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Combustion during self-propagating high-temperature synthesis of Ti + 1.7B reaction tapes obtained by rolling from a powder mixture is experimentally investigated. Dependences between the combustion wave propagation velocity in the reaction tapes and the applied pressure are revealed. It is shown that the burning rate of the tapes weakly depends on the compression pressure within 0.001–4 MPa. At a compression pressure above 0.5 MPa, unreacted regions appear during the combustion of the tapes. The limiting pressure at which the combustion stops is determined as 12 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. T. I. Serebryakova, V. A. Neronov, and P. D. Peshev, High-Temperature Borides (Metallurgiya, Moscow, 1991; Cambridge Inter. Sci. Publ., 2003).

  2. B. Basu, G. B. Raju, and A. K. Suri, “Processing and Properties of Monolithic TiB2 Based Materials," Int. Mater. Rev. 51 (6), 352–374 (2006); DOI: 10.1179/174328006X102529.

    Article  Google Scholar 

  3. A. G. Korotkikh, V. A. Arkhipov, K. V. Slyusarsky, and I. V. Sorokin, “Study of Ignition of High-Energy Materials with Boron and Aluminum and Titanium Diborides," Fiz. Goreniya Vzryva 54 (3), 109–115 (2018) [Combust., Expl., Shock Waves 54 (3), 350–356 (2018); 10.1134/S0010508218030127].

    Article  Google Scholar 

  4. S. P. Koundinyan, J. B. Bdzil, M. Matalon, and D. S. Stewart, “Diffusion Flames in Condensed-Phase Energetic Materials: Application to Titanium–Boron Combustion," Combust. Flame 162 (12), 4486–4496 (2015); DOI: 10.1016/j.combustflame.2015.08.023.

    Article  Google Scholar 

  5. C. J. Zhang, F. Kong, S. L. Xiao, et al., “Evolution of Microstructural Characteristic and Tensile Properties during Preparation of TiB/Ti Composite Sheet," Mater. Des. 36, 505–510 (2012); DOI: 10.1016/j.matdes.2011.11.060.

    Article  Google Scholar 

  6. M. Cirakoglu, S. Bhaduri, and S. B. Bhaduri, “Combustion Synthesis Processing of Functionally Graded Materials in the Ti–B Binary System," J. Alloys Compd. 347 (1/2), 259–265 (2002); DOI: 10.1016/S0925-8388(02)00499-1.

    Article  Google Scholar 

  7. Q. An, L. J. Huang, Y. Jiao, et al., “Intergrowth Microstructure and Superior Wear Resistance of (TiB + TiC)/Ti64 Hybrid Coatings by Gas Tungsten Arc Cladding," Mater. Des. 162, 34–44 (2019); DOI: 10.1016/j.matdes.2018.11.039.

    Article  Google Scholar 

  8. A. J. Horlock, D. G. McCartney, P. H. Shipway, and J. V. Wood, “Thermally Sprayed Ni(Cr)–TiB2 Coatings Using Powder Produced by Self-Propagating High Temperature Synthesis: Microstructure and Abrasive Wear Behavior," Mater. Sci. Eng. A 336 (1/2), 88–98 (2002); DOI: 10.1016/S0921-5093(01)01918-9.

    Article  Google Scholar 

  9. Y. Taneoka, O. Odawara, and Y. Kaieda, “Combustion Synthesis of the Titanium–Aluminum–Boron System," J. Am. Ceram. Soc. 72 (6), 1047–1049 (1989); DOI: 10.1111/j.1151-2916.1989.tb06268.x.

    Article  Google Scholar 

  10. H. Yokokawa, “Tables of Thermodynamic Properties of Inorganic Compounds," J. Nat. Chem. Lab. Ind. 83, 27–121 (1988).

    Google Scholar 

  11. G. K. Moiseev and A. L. Ivanovskii, “Standard Enthalpies of Formation of Related Compounds in Metal–Boron Systems," Izv. Chelyabinsk. Nauch. Ts. Ural. Otd. Ross. Akad. Nauk 29 (3), 5–9 (2005).

    Google Scholar 

  12. A. G. Merzhanov and I. P. Borovinskaya, “Self-Propagating High-Temperature Synthesis of Refractory Inorganic Materials," Dokl. Akad. Nauk SSSR 204 (2), 366–369 (1972).

    Google Scholar 

  13. S. G. Vadchenko, I. P. Borovinskaya, and A. G. Merzhanov, “Solid-Flame Combustion of Thin Films," Dokl. Akad. Nauk 408 (2), 211–213 (2006).

    Google Scholar 

  14. S. G. Vadchenko, I. P. Borovinskaya, and A. G. Merzhanov, “SHS in Thin Films. Possibilities of Engineering Application," Izv. Vyssh. Uchebn. Zaved. Tsvet. Metallurg., No. 5, 36–43 (2006).

  15. A. S. Dudyrev, D. B. Dem’yanenko, and V. V. Efanov, “The New Pyroautomatic Machinery for Securing Small Spacecraft Operation," Izv. St.-Peterburg. Gos. Tekhnol. Inst. (Tekhn. Univ.), No. 1 (27), 5–9 (2007).

  16. V. O. Popov, “Prospects for the Development of Fast-Burning Low-Gas Pyrotechnic Compositions," Yuzhno-Sib. Nauch. Vestn. 24 (4), 236–241 (2018).

    Google Scholar 

  17. S. Chen, Q. Meng, N. Zhang, et al., “In Situ Synthesis and Bonding of Ti–TiAl–TiC/Ni Functionally Graded Materials by Field-Activated Pressure-Assisted Synthesis Process," Mater. Sci. Eng. A 538, 103–109 (2012); DOI: 10.1016/j.msea.2012.01.020.

    Article  Google Scholar 

  18. R. E. Ferguson and E. Shafirovich, “Aluminum–Nickel Combustion for Joining Lunar Regolith Ceramic Tiles," Combust. Flame 197, 22–29 (2018); DOI: 10.1016/j.combustflame.2018.06.032.

    Article  Google Scholar 

  19. A. S. Mukasyan and J. D. E. White, “Combustion Joining of Refractory Materials," Int. J. Self-Propag. High-Temp. Synth. 16 (3), 154–168 (2007); DOI: 10.3103/S1061386207030089.

    Article  Google Scholar 

  20. A. Maznoy, A. Kirdyashkin, V. Kitler, and A. Solovyev, “Combustion Synthesis and Characterization of Porous Ni–Al Materials for Metal-Supported Solid Oxide Fuel Cells Application," J. Alloys Compd. 697, 114–123 (2017); DOI: 10.1016/j.jallcom.2016.11.350.

    Article  Google Scholar 

  21. O. K. Kamynina, S. G. Vadchenko, and A. S. Shchukin, “SHS-Aided Joining of Ceramic Materials with the Ta Substrate," Izv. Vyssh. Uchebn. Zaved. Poroshk. Metallurg. Funkts. Pokr., No. 3, 41–45 (2018); DOI: 10.17073/1997-308X-2018-3-41-45 [Russian J. Non-Ferrous Metals 60, 422–425 (2019)].

    Article  Google Scholar 

  22. O. K. Kamynina, S. G. Vadchenko, N. F. Shkodich, and E. V. Petrov, “Multilayer Ti–Ta–Ni–TiC–TiB Composite by Combustion-Aided Joining," Int. J. Self-Propag. High-Teemp. Synth. 29 (4), 220–224 (2020); DOI: 10.3103/S1061386220040032.

    Article  Google Scholar 

  23. S. G. Vadchenko and A. S. Rogachev, “Method for Obtaining Multilayer Energy-Releasing Films for Permanent Joining of Materials," Patent RU 2479382 C1, Publ. April 20, 2013; Bul. No. 11.

  24. S. G. Vadchenko, A. S. Rogachev, O. D. Boyarchenko, and Yu. A. Kulagin, “Method for Obtaining a Multilayer Tape for a Fuel Element," Patent RU 2499907 C1, Publ. November 27, 2013.

  25. S. G. Vadchenko, “Dependence of the Burning Rates of Tapes of Ti + \(x\)B Mixtures on Boron Concentration," Fiz. Goreniya Vzryva 55 (2), 61–67 (2019) [Combust., Expl., Shock Waves 55 (2), 177–183 (2019)].

    Article  Google Scholar 

  26. A. A. Shiryaev, “Thermodynamics of SHS Processes: An Advanced Approach," J. Self-Propag. High-Temp. Synth. 4 (4), 351–362 (1995).

    Google Scholar 

  27. R. V. Reeves, M. A. Rodriguez, E. D. Jones, and D. P. Adams, “Condensed-Phase and Oxidation Reaction Behavior of Ti/2B Foils in Varied Gaseous Environments," J. Phys. Chem. C. 116 (33), 17904–17912 (2012); DOI: 10.1021/jp303785r.

    Article  Google Scholar 

  28. A. A. Zenin, A. G. Merzhanov, and G. A. Nersisyan, “Thermal Wave Structure in SHS Processes," Fiz. Goreniya Vzryva 17 (1), 79–90 (1981) [Combust., Expl., Shock Waves 17 (1), 63–71 (1981)].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Vadchenko.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 6, pp. 42-47.https://doi.org/10.15372/FGV20210605.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadchenko, S.G., Suvorov, D.S., Kamynina, O.K. et al. Effect of Compression Pressure on Combustion of Tapes Obtained by Rolling a Ti + 1.7B Powder Mixture. Combust Explos Shock Waves 57, 672–677 (2021). https://doi.org/10.1134/S0010508221060058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221060058

Keywords

Navigation