Skip to main content
Log in

Effect of Mechanical Activation and the Content of a Metal Binder on Ti + 2B + x (Fe + Co + Cr + Ni + Al) Combustion

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper describes a study of the effect of a Fe + Co + Cr + Ni + Al metal binder content and mechanical activation (MA) on burning rate, maximum combustion temperature, the elongation of samples during combustion, the mixture yield after MA, the size of composite particles after MA, and the morphology and phase composition of combustion products in a Ti + 2B + \(x\)(Fe + Co + Cr + Ni + Al) system. Self-propagating high-temperature synthesis (SHS) is used to obtain a composite material consisting of ceramics and a high-entropy alloy. The MA increases from 60 to 80% the maximum content of a metal binder in the mixture, at which SHS is carried out at room temperature. The addition of a Fe + Co + Cr + Ni + Al binder to the activated Ti + 2B mixture prevents mechanochemical synthesis from proceeding during 5-min long MA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. A. P. Hardt and P. V. Phung, “Propagation of Gasless Reactions in Solids—I. Analytical Study of Exothermic Intermetallic Reaction Rate. Combust. Flame 21 (1), 77–89 (1973); DOI: 10.1016/0010-2180(73)90009-6.

    Article  Google Scholar 

  2. A. P. Hardt and R. W. Holsinger, “Propagation of Gasless Reactions in Solids—II. Experimental Study of Exothermic Intermetallic Reaction Rate," Combust. Flame 21 (1), 91–97 (1973); DOI: 10.1016/0010-2180(73)90010-2.

    Article  Google Scholar 

  3. M. A. Korchagin, “Thermal Explosion in Mechanically Activated Low-Calorific-Value Compositions," Fiz. Goreniya Vzryva 51 (5), 77–86 (2015) [Combust., Expl., Shock Waves 51 (5), 578–586 (2015)]; DOI: 10.1134/S0010508215050093.

    Article  Google Scholar 

  4. M. A. Korchagin, V. Yu. Filimonov, E. V. Smirnov, and N. Z. Lyakhov, “Thermal Explosion of a Mechanically Activated 3Ni + Al Mixture," Fiz. Goreniya Vzryva 46 (1), 48–53 (2010) [Combust., Expl., Shock Waves 46 (1), 41–46 (2010)].

    Article  Google Scholar 

  5. N. A. Kochetov and S. G. Vadchenko, “Effect of the Time of Mechanical Activation of a Ti + 2B Mixture on Combustion of Cylindrical Samples and Thin Foils," Fiz. Goreniya Vzryva 51 (4), 77–81 (2015) [Combust., Expl., Shock Waves 51 (4), 467–471 (2015); DOI: 10.1134/S0010508215040103].

    Article  Google Scholar 

  6. N. A. Kochetov and B. S. Seplyarskii, “Effect of Initial Temperature and Mechanical Activation on Synthesis in a Ti + Al System," Fiz. Goreniya Vzryva 56 (3), 69–77 (2020) [Combust., Expl., Shock Waves 56 (3), 308–316 (2020); DOI: 10.1134/S0010508220030077].

    Article  Google Scholar 

  7. N. A. Kochetov, B. S. Seplyarskii, and A. S. Shchukin, “Dependences of the Burning Rate and Phase Composition of Condensed Products of a Ti + Ni Mixture on the Mechanical Activation Time," Fiz. Goreniya Vzryva 55 (3), 63–70 (2019) [Combust., Expl., Shock Waves 55 (3), 300–307 (2019); DOI: 10.1134/S0010508219030080].

    Article  Google Scholar 

  8. S. G. Vadchenko, “Gas Emission During Combustion of Mechanically Activated Ni + Al Mixtures," Int. J. Self-Propag. High-Temp. Synth. 25 (4), 210–214 (2016); DOI: 10.3103/S1061386216040105.

    Article  Google Scholar 

  9. S. G. Vadchenko, “Gas Release During Combustion of Ti + 2B Films: Influence of Mechanical Alloying," Int. J. Self-Propag. High-Temp. Synth. 24 (2), 90–93 (2015); DOI: 10.3103/S1061386215020107.

    Article  Google Scholar 

  10. N. A. Kochetov and B. S. Seplyarsky, “Dependence of Combustion Rates and Maximum Synthesis Temperatures on the Initial Sample Temperature for Initial and Activated Ti + Ni Mixtures," Khim. Fiz. 39 (9), 39–44 (2020) [Russian J. Phys. Chem. B 14 (5), 791–796 (2020); DOI: 10.31857/S0207401X20090058].

    Article  Google Scholar 

  11. D. B. Miracle and O. N. Senkov, “A Critical Review of High Entropy Alloys and Related Concepts," Acta Mater. 122, 448–511 (2017); DOI: 10.1016/j.actamat.2016.08.081.

    Article  ADS  Google Scholar 

  12. Y. Zhang, T. T. Zuo, Z. Tang, et al., “Microstructures and Properties of High-Entropy Alloys," Prog. Mater. Sci. 61, 1–93 (2014); DOI: 10.1016/j.pmatsci.2013.10.001.

    Article  Google Scholar 

  13. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural Development in Equiatomic Multicomponent Alloys," Mater. Sci. Eng. A 375–377, 213–218 (2004); DOI: 10.1016/j.msea.2003.10.257.

    Article  Google Scholar 

  14. D. Y. Li and Y. Zhang, “The Ultrahigh Charpy Impact Toughness of Forged Al xCoCrFeNi High Entropy Alloys at Room and Cryogenic Temperatures," Intermetallics 70, 24–28 (2016); DOI: 10.1016/j.intermet.2015.11.002.

    Article  Google Scholar 

  15. W. Ji, Z. Fu, W. Wang, et al., “Mechanical Alloying Synthesis and Spark Plasma Sintering Consolidation of CoCrFeNiAl High-Entropy Alloy," J. Alloys Compd. 589, 61–66 (2014); DOI: 10.1016/j.jallcom.2013.11.146.

    Article  Google Scholar 

  16. B. Gludovatz, A. Hohenwarter, D. Catoor, et al., “A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications," Science 345 (6201), 1153–1158 (2014); DOI: 10.1126/science.1254581.

    Article  ADS  Google Scholar 

  17. A. Gali and E. P. George, “Tensile Properties of High- and Medium-Entropy Alloys," Intermetallics 39, 74–78 (2013); DOI: 10.1016/j.intermet.2013.03.018.

    Article  Google Scholar 

  18. H. Shahmir, J. He, Z. Lu, et al., “Evidence for Superplasticity in a CoCrFeNiMn High-Entropy Alloy Processed by High-Pressure Torsion," Mater. Sci. Eng. A 685, 342–348 (2017); DOI: 10.1016/j.msea.2017.01.016.

    Article  Google Scholar 

  19. A. Kilmametov, R. Kulagin, A. Mazilkin, et al., “High-Pressure Torsion Driven Mechanical Alloying of CoCrFeMnNi High Entropy Alloy," Scripta Mater. 158, 29–33 (2019); DOI: 10.1016/j.scriptamat.2018.08.031.

    Article  Google Scholar 

  20. J.-W. Yeh, Y.-L. Chen, S.-J. Lin, and S.-K. Chen, “High-Entropy Alloys—A New Era of Exploitation," Mater. Sci. Forum 560, 1–9 (2007); DOI: 10.4028/www.scientific.net/MSF.560.1.

  21. P. P. Bhattacharjee, G. D. Sathiaraj, M. Zaid, et al., “Microstructure and Texture Evolution during Annealing of Equiatomic CoCrFeMnNi High-Entropy Alloy," J. Alloys Compounds 587, 544–552 (2014); DOI: 10.1016/j.jallcom.2013.10.237.

    Article  Google Scholar 

  22. J. Gu, S. Ni, Y. Liu, and M. Song, “Regulating the Strength and Ductility of a Cold Rolled FeCrCoMnNi High-Entropy Alloy via Annealing Treatment," Mater. Sci. Eng. A 755, 289–294 (2019); DOI: 10.1016/j.msea.2019.04.025.

    Article  Google Scholar 

  23. A. S. Rogachev, S. G. Vadchenko, N. A. Kochetov, et al., “Structure and Properties of Equiatomic CoCrFeNiMn Alloy Fabricated by High-Energy Ball Milling and Spark Plasma Sintering," J. Alloys Compounds 805, 1237–1245 (2019); DOI: 10.1016/j.jallcom.2019.07.195.

    Article  Google Scholar 

  24. N. A. Kochetov, A. S. Rogachev, A. S. Shchukin, et al., “Mechanical Alloying with the Partial Amorphization of the Fe–Cr–Co–Ni–Mn Multicomponent Powder Mixture and Its Spark Plasma Sintering to Produce a Compact High-Entropy Material," Izv. Vyssh. Uchebn. Zaved., Poroshk. Metallurg. Funkts. Pokr., No. 2, 35–42 (2018) [Russian J. Non-Ferrous Metals 60 (3), 268–273 (2019); DOI: 10.17073/1997-308X-2018-2-35-42].

    Article  Google Scholar 

  25. A. S. Rogachev, A. N. Gryadunov, N. A. Kochetov, et al., “High-Entropy-Alloy Binder for TiC-Based Cemented Carbide by SHS Method," Int. J. Self-Propag. High-Temp. Synth. 28 (3), 196–198 (2019); DOI: 10.3103/S1061386219030117.

    Article  Google Scholar 

  26. A. S. Rogachev, S. G. Vadchenko, N. A. Kochetov, et al., “Combustion Synthesis of TiC-Based Ceramic-Metal Composites with High Entropy Alloy Binder," J. Eur. Ceram. Soc. 40, 2527–2532 (2020); DOI: 10.1016/j.jeurceramsoc.2019.11.059.

    Article  Google Scholar 

  27. A. Rajabi, M. J. Ghazali, J. Syarif, and A. R. Daud, “Development and Application of Tool Wear: A Review of the Characterization of TiC-Based Cermets with Different Binders," Chem. Eng. J. 255, 445–452 (2014); DOI: 10.1016/j.cej.2014.06.078.

    Article  Google Scholar 

  28. A. Rajabi, M. J. Ghazali, and A. R. Daud, “Chemical Composition, Microstructure, and Sintering Temperature Modifications on Mechanical Properties of TiC-Based Cermet—A Review," Mater. Des. 67, 95–106 (2015); DOI: 10.1016/j.matdes.2014.10.081.

    Article  Google Scholar 

  29. Y. Peng, H. Miao, and Z. Peng, “Development of TiCN-Based Cermets: Mechanical Properties and Wear Mechanism," Int. J. Refract. Met. Hard Mater. 39, 78–89 (2013); DOI: 10.1016/j.ijrmhm.2012.07.001.

    Article  Google Scholar 

  30. Z. Fu and R. Koc, “Ultrafine TiB2–TiNiFeCrCoAl High-Entropy Alloy Composite with Enhanced Mechanical Properties," Mater. Sci. Eng. A 702, 184–188 (2017); DOI: 10.1016/j.msea.2017.07.008.

    Article  Google Scholar 

  31. S. Zhang, Y. Sun, B. Ke, et al., “Preparation and Characterization of TiB2-(Supra-Nano-Dual-Phase) High-Entropy Alloy Cermet by Spark Plasma Sintering," Metals 8 (1), 1–10 (2018); DOI: 10.3390/met8010058.

    Article  Google Scholar 

  32. Z. Fu and R. Koc, “TiNiFeCrCoAl High-Entropy Alloys as Novel Metallic Binders for TiB2–TiC Based Composites," Mater. Sci. Eng. A 735, 302–309 (2018); DOI: 10.1016/j.msea.2018.08.058.

    Article  Google Scholar 

  33. A. G. De la Obra, M. A. Avilés, Y. Torres, et al., “A New Family of Cermets: Chemically Complex but Microstructurally Simple," Int. J. Refract. Met. Hard Mater. 63, 17–25 (2017); DOI: 10.1016/j.ijrmhm.2016.04.011.

    Article  Google Scholar 

  34. N. A. Kochetov and A. E. Sytschev, “Effects of Magnesium on Initial Temperature and Mechanical Activation on Combustion Synthesis in Ti–Al–Mg System," Mater. Chem. Phys. 257, 123727 (2021); DOI: 10.1016/j.matchemphys.2020.123727.

    Article  Google Scholar 

  35. O. K. Kamynina, A. S. Rogachev, A. E. Sytschev, and L. M. Umarov, “Spontaneous Deformation During Self-Propagating High-Temperature Synthesis," Int. J. Self-Propag. High-Temp. Synth. 13 (3), 193–204 (2004).

    Google Scholar 

  36. O. K. Kamynina, A. S. Rogachev, and L. M. Umarov, “Deformation Dynamics of a Reactive Medium during Gasless Combustion," Fiz. Goreniya Vzryva 39 (5), 69–73 (2003) [Combust., Expl., Shock Waves 55 (3), 548–551 (2003)].

    Article  Google Scholar 

  37. N. A. Kochetov and B. S. Seplyarskii, “Effect of Mechanical Activation of Granulated and Powdered Ni + Al Mixtures on Flame-Propagation Rates and Sample Elongation in Combustion," Khim. Fiz. 37 (10), 44–50 (2018) [Russian J. Phys. Chem. B 12 (5), 883–889 (2018); DOI: 10.1134/S0207401X18100059].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kochetov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 2, pp. 49-57.https://doi.org/10.15372/FGV20220205.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochetov, N.A. Effect of Mechanical Activation and the Content of a Metal Binder on Ti + 2B + x (Fe + Co + Cr + Ni + Al) Combustion. Combust Explos Shock Waves 58, 169–177 (2022). https://doi.org/10.1134/S0010508222020058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222020058

Keywords

Navigation