Skip to main content
Log in

Combustion of Large Monolithic Titanium Particles in Air. I. Experimental Techniques, Burning Time and Fragmentation Modes

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A method for obtaining large burning monolithic titanium particles is described. The combustion of freely falling particles with a diameter of 120–540 \(\mu\)m in air at atmospheric pressure is investigated. The burning time and the characteristic beginning and end times of fragmentation as a function of particle diameter are determined by processing video recordings of combustion of more than 250 particles. Two fragmentation modes are described. It is found that the diameter of the burning particles determines which of these modes occurs. The boundary particle size separating the two modes is determined. It is shown that the fragmentation pattern and characteristic times for titanium agglomerates and monolithic particles of the indicated sizes differ slightly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. O. G. Glotov, “Ignition and Combustion of Titanium Particles. Experimental Methods and Results," Usp. Fiz. Nauk, 189 (2), 135–171 (2019); DOI: 10.3367/UFNr.2018.04.038349 [Phys.-Usp. 62 (20), 131 (2019)].

    Article  Google Scholar 

  2. L. B. Zubkov, Space Metal. All about Titanium (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  3. U. Zwicker, Ulrich Titan und Titanlegierungen (Springer, Berlin, 1974)

    Book  Google Scholar 

  4. C. Veiga, J. P. Davim, and A. J. R. Loureiro, “Properties and Applications of Titanium Alloys: A Brief Review," Rev. Adv. Mater. Sci. 32 (2), 133–148 (2012).

    Google Scholar 

  5. V. I. Bolobov, “Ignition of Titanium during Fracture in Oxygen," Fiz. Goreniya Vzryva 53 (2), 47–53 (2017) [Combust., Expl., Shock Waves 53 (2), 165–170 (2017); https://doi.org/10.1134/S001050821702006X].

    Article  Google Scholar 

  6. B. G. Efimov and P. N. Kuzyaev, “Influence of the Angle of Attack on the Combustion Characteristics of Titanium Plates in an Airstream," Fiz. Goreniya Vzryva 31 (6), 37–40 (1995) [Combust., Expl., Shock Waves. 31 (6), 652–654 (1995); https://doi.org/10.1007/BF00744969].

    Article  Google Scholar 

  7. A. Abbud-Madrid, M. C. Branch, and J. W. Daily, “Ignition and Combustion of Bulk Titanium and Magnesium at Normal and Reduced Gravity," Symp. (Int.) Combust. 26 (2), 1929–1936 (1996); DOI: 10.1016/S0082-0784(96)80015-4.

    Article  Google Scholar 

  8. A. A. Shidlovskii, Principles of Pyrotechnics (Mashinostroenie, Moscow, 1973) [in Russian].

    Google Scholar 

  9. Yu. O. Ladyagin, Introduction to Pyrotechnics (Oborongiz, Moscow, 1987) [in Russian].

    Google Scholar 

  10. A. S. Rogachev and A. S. Mukas’yan, Combustion for the Synthesis of Materials: An Introduction to Structural Macrokinetics (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  11. H. H. Nersisyan, H. I. Won, C. W. Won, J. B. Kim, S. M. Park, and J. H. Kim, “Combustion Synthesis of Porous Titanium Microspheres," Mater. Chem. Phys.  141 (1) 283–288 (2013); DOI: 10.1016/j.matchemphys.2013.05.012.

    Article  Google Scholar 

  12. Production of Spherical Titanium and Titanium Alloy Powders, Normin Ltd; https://normin.ru/ products/Spherical-titanium-RUS.pdf (access date: December 20, 2020).

  13. A. V. Mikhailutenko, Yu. F. Basov, and A. V. Ovchinnikov, “Application of Additive Technologies for the Production of Gas Turbine Engine Parts Using Promising Titanium Alloy Powders," in Problems and Prospects for the Development of Engine Building, Samara, June 22–24, 2016, Int. Scientific and Technical Conf. (Korolev Samara National Research University, 2016) pp. 36–37.

  14. B. K. Athawale, S. N. Asthana, and H. Singh, “Burning Rate Studies of Metal Powder (Ti, Ni)-Based Fuel-Rich Propellants," J. Energ. Mater. 22 (2), 55–68 (2004); DOI: 10.1080/07370650490492770.

    Article  Google Scholar 

  15. S. A. Hashim, S. Karmakar, and A. Roy, “Effects of Tix and Mg Particles on Combustion Characteristics of Boron–HTPB-Based Solid Fuels for Hybrid Gas Generator in Ducted Rocket Applications," Acta Astronaut. 160, 125–137 (2019); DOI: 10.1016/j.actaastro.2019.04.002.

    Article  ADS  Google Scholar 

  16. V. F. Komarov, G. V. Sakovich, A. B. Vorozhtsov, A. G. Vakutin, and M. V. Komarova, “The Role of Nanometals in Enhancement of the Explosion Performance of Composite Explosives," in 40th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2009), pp. 108-1–108-8.

  17. N. I. Poletaev, A. N. Zolotko, and Yu. A. Doroshenko, “Degree of Dispersion of Metal Combustion Products in a Laminar Dust Flame," Fiz. Goreniya Vzryva 47 (2), 30–44 (2011) [Combust., Expl., Shock Waves 47 (2), 153–165 (2011); https://doi.org/10.1134/S0010508211020031].

    Article  Google Scholar 

  18. V. Weiser, J. Neutz, N. Eisenreich, E. Roth, H. Schneider, and S. Kelzenberg, “Development and Characterization of Pyrotechnic Compositions as Counter Measures against Toxic Clouds," in 36th Int. Annu. Conf. of ICT & 32nd Int. Pyrotech. Seminar (Karlsruhe, Germany, 2005), pp. 102-1–102-12.

  19. R. S. Zakharov and O. G. Glotov, “Combustion Characteristics of Pyrotechnic Compositions with Powdered Titanium," Vestn. NGU, Ser. Fiz. 2 (3), 32–40 (2007).

    Google Scholar 

  20. O. G. Glotov and V. E. Zarko, “Formation of Nanosized Products in Combustion of Metal Particles," in Energetic Nanomaterials: Synthesis, Characterization, and Application (Elsevier, 2016), pp. 285–321.

  21. O. G. Glotov, “Combustion of Spherical Agglomerates of Titanium in Air. I. Experimental Approach," Fiz. Goreniya Vzryva 49 (3), 50–57 (2013) [Combust., Expl., Shock Waves 49 (3), 299–306 (2013); https://doi.org/10.1134/S0010508213030064].

    Article  Google Scholar 

  22. O. G. Glotov, “Combustion of Spherical Agglomerates of Titanium in Air. II. Experimental Results," Fiz. Goreniya Vzryva 49 (3), 58–71 (2013) [Combust., Expl., Shock Waves 49 (3), 307–319 (2013); https://doi.org/10.1134/S0010508213030076].

    Article  Google Scholar 

  23. E. Shafirovich, S. K. Teoh, and A. Varma, “Combustion of Levitated Titanium Particles in Air," Combust. Flame 152 (1/2), 262–271 (2008); DOI: 10.1016/j.combustflame.2007.05.008.

    Article  Google Scholar 

  24. I. E. Molodetsky, E. L. Dreizin, E. P. Vicenzi, and C. K. Law,, “Phases of Titanium Combustion in Air," Combust. Flame 112 (4), 522–532 (1998); DOI: 10.1016/S0010-2180(97)00146–6.

    Article  Google Scholar 

  25. O. G. Glotov, N. S. Belousova, G. S. Surodin, and V. E. Zarko, “Combustion Characteristics of Coarse Titanium Particles in Air," in 49th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2018), pp. 111-1–111-14.

  26. O. G. Glotov, N. S. Belousova, G. S. Surodin, and V. E. Zarko, “Combustion Characteristics of Coarse Titanium Particles in Air," in High Energy and Special Materials: Demilitarization, Antiterrorism and Civil Application, Book of Abstr. XIV Int. Workshop HEMs-2018 (House of Tomsk State Univ., Tomsk, 2018), pp. 35–38.

  27. N. S. Belousova, O. G. Glotov, and G. S. Surodin, “Fragmentation and Formation of Condensed Products upon Combustion of Titanium Particles in Air," in 50th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2019), pp. 13-1–13-14.

  28. N. S. Belousova, O. G. Glotov, and A. V. Guskov, “Study of the Free Falling Particles Trajectory at the Burning Monolithic Titanium Particles," J. Phys.: Conf. Ser. 1214 (012010), 1–7 (2019); https://iopscience.iop.org/article/10.1088/1742-6596/ 1214/1/012010/pdf.

  29. O. G. Glotov, V. V. Karasev, V. E. Zarko, T. D. Fedotova, and M. W. Beckstead, “Evolution of Aluminum Agglomerates Moving in Combustion Products of Model Solid Propellant," Int. J. Energ. Mater. Chem. Propul. 2002 5 (1–6), 397–406; DOI: 10.1615/IntJEnergeticMaterialsChemProp.v5.i1-6.430.

    Article  Google Scholar 

  30. O. G. Glotov, V. E. Zarko, V. V. Karasev, T. D. Fedotova, and A. D. Rychkov, “Macrokinetics of Combustion of Monodisperse Agglomerates in the Flame of a Model Solid Propellant," Fiz. Goreniya Vzryva 39 (5), 74–85 (2003) [Combust., Expl., Shock Waves 39 (5), 552–562 (2003); https://doi.org/10.1023/A:1026113902771].

    Article  Google Scholar 

  31. O. G. Glotov, A. A. Onishchuk, V. V. Karasev, V. E. Zarko, and A. M. Baklanov, “Size and Morphology of Nanooxide Aerosol Formed during Combustion of an Aluminum Particle," Dokl. Akad. Nauk 413 (2), 206–209 (2007).

    Google Scholar 

  32. O. G. Glotov and V. A. Zhukov, “Evolution of 100-\(\mu\)m Aluminum Agglomerates and Initially Continuous Aluminum Particles in the Flame of a Model Solid Propellant. I. Experimental Approach," Fiz. Goreniya Vzryva 44 (6), 52–60 (2008) [Combust., Expl., Shock Waves 44 (6), 662–670 (2008); https://doi.org/10.1007/s10573-008-0100-3].

    Article  Google Scholar 

  33. O. G. Glotov and V. A. Zhukov, “The Evolution of 100-\(\mu\)m Aluminum Agglomerates and Initially Continuous Aluminum Particles in the Flame of a Model Solid Propellant. II. Results," Fiz. Goreniya Vzryva 44 (6), 61–71 (2008) [Combust., Expl., Shock Waves 44 (6), 671–681 (2008); https://doi.org/10.1007/s10573-008-0101-2].

    Article  Google Scholar 

  34. O. G. Glotov, G. S. Surodin, and A. M. Baklanov, “Combustion of Spherical Agglomerates of Titanium in Air. III. Motion of Agglomerates and the Effect of Blowing Velocity on Nanosized Combustion Products and Burning Time," Fiz. Goreniya Vzryva 55 (1), 49–62 (2019) [Combust., Expl., Shock Waves), 55 (1), 43–55 (2019); https://doi.org/10.1134/S0010508219010052].

    Article  Google Scholar 

  35. O. G. Glotov and G. S. Surodin, “Combustion of Aluminum and Boron Agglomerates Free Falling in Air. I. Experimental Approach," Fiz. Goreniya Vzryva 55 (3), 100–109 (2019); [Combust., Expl., Shock Waves 55 (3), 335–344 (2019); https://doi.org/10.1134/S0010508219030110].

    Article  Google Scholar 

  36. O. G. Glotov and G. S. Surodin, “Combustion of Aluminum and Boron Agglomerates Free Falling in Air. II. Experimental Results," Fiz. Goreniya Vzryva 55 (3), 110–117 (2019); [Combust., Expl., Shock Waves 55 (3), 345–352 (2019); https://doi.org/10.1134/S0010508219030122].

    Article  Google Scholar 

  37. O. G. Glotov, N. S. Belousova, and G. S. Surodin, “Combustion of Aluminum Model AgglomeRaTes in Free Fall in Air," in 50th Int. Annu. Conf. of ICT, Karlsruhe, Germany, 2019, pp. 81-1–81-12.

  38. V. N. Kizhnyaev, T. V. Golobokova, F. A. Pokatilov, L. I. Vereshchagin, and Ya. I. Estrin, “Synthesis of Energetic Triazole- and Tetrazole-Containing Oligomers and Polymers (Review)," Khim. Geterotsikl. Soed. 53 (6/7), 682–692 (2017) [Chem. Heterocycl. Comp. 53 (6/7), 682–692 (2017); https://doi.org/10.1007/s10593-017-2109-6].

    Article  Google Scholar 

  39. T. I. Gorbenko, “Control of the Energy Characteristics of Propellants Based on Ammonium Nitrate," Vestn. Sib. Gos. Aerokosm. Univ., Akad. M. F. Reshetneva 2, 173–178 (2009).

    Google Scholar 

  40. A. A. Afifi and S. P. Azen, Statistical Analysis: A Computer-Oriented Approach (Academic Press, 1972).

  41. S. Wang, S. Mohan, and E. L. Dreizin, “Effect of Flow Conditions on Burn Rates of Metal Particles," Combust. Flame 168, 10–19 (2016); DOI: 10.1016/j.combustflame.2016.03.014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. G. Glotov or N. S. Belousova.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 6, pp. 20-31.https://doi.org/10.15372/FGV20210603.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glotov, O.G., Belousova, N.S. & Surodin, G.S. Combustion of Large Monolithic Titanium Particles in Air. I. Experimental Techniques, Burning Time and Fragmentation Modes. Combust Explos Shock Waves 57, 651–662 (2021). https://doi.org/10.1134/S0010508221060034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221060034

Keywords

Navigation