Skip to main content
Log in

Combustion of Large Monolithic Titanium Particles in Air. II. Characteristics of Condensed Combustion Products

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Methods for the collection and analysis of condensed combustion products (CCPs) of large monolithic titanium particles with a diameter of 350–460 \(\mu\)m in air at atmospheric pressure are described. Detailed data on the granulometric, morphological, and phase compositions of CCPs and the number of particles produced by a single burning mother particle are presented. The following morphological types of CCP particles were identified: compact spheres (combustion residues of mother particles and their fragments) and aerogel round and elongated comet-shaped objects (rarefied openwork particles consisting of chains of nanosized spherules). According to the O/Ti atom ratio, all types of CCP particles are oxide. The mass fraction of aerogel objects in CCPs is 0.52–0.98, and their physical density is about 0.8 g/cm3. The characteristic sizes of compact spheres are 2–410 \(\mu\)m, those of aerogel round objects are 11–470 \(\mu\)m, and the length of aerogel comet-shaped objects can reach 13 mm. The typical sizes of spherules are 25–100 nm. Large compact spheres 200–400 \(\mu\)m in size typically contain a gaseous bubble and have a density of about 0.9 g/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. P. F. Pokhil, A. F. Belyaev, Yu. V. Frolov, V. S. Logachev, and A. I. Korotkov, Combustion of Powdered Metals in Active Media (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  2. A. L. Breiter, V. M. Mal’tsev, and E. I. Popov, “Models of Metal Ignition," Fiz. Goreniya Vzryva 13 (4), 558–570 (1977) [Combust., Expl., Shock Waves 13 (4), 475–485 (1977); https://doi.org/10.1007/BF00744795].

    Article  Google Scholar 

  3. O. G. Glotov, N. S. Belousova, and G. S. Surodin, “Combustion of Large Monolithic Titanium Particles in the Air. I. Experimental Methods, Burning Time and Fragmentation Modes," Fiz. Goreniya Vzryva 57 (6), 20–31 (2021) [Combust., Expl., Shock Waves 57 (6), 651–662 (2021); https://doi.org/10.1134/S0010508221060034].

    Article  Google Scholar 

  4. N. I. Poletaev, A. N. Zolotko, and Yu. A. Doroshenko, “Degree of Dispersion of Metal Combustion Products in a Laminar Dust Flame," Fiz. Goreniya Vzryva 47 (2), 30–44 (2011) [Combust., Expl., Shock Waves 47 (2), 153–165 (2011); https://doi.org/10.1134/S0010508211020031].

    Article  Google Scholar 

  5. B. M. Smirnov, “Aerogels," Usp. Fiz. Nauk 152 (1), 133–157 (1987) [Sov. Phys. Usp. 30 (5), 420–432 (1987)]; https://doi.org/10.1070/PU1987v030n05ABEH002906.

    Article  ADS  Google Scholar 

  6. O. G. Glotov, N. S. Belousova, G. S. Surodin, and V. E. Zarko, “Combustion Characteristics of Coarse Titanium Particles in Air," in 49th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2018), p. 111(1–14).

  7. O. G. Glotov, N. S. Belousova, G. S. Surodin, and V. E. Zarko, “Combustion Characteristics of Coarse Titanium Particles in Air," in High Energy and Special Materials: Demilitarization, Antiterrorism and Civil Application, Book of Abstr. XIV Int. Workshop HEMs-2018 (House of Tomsk State Univ., Tomsk, 2018), pp. 35–38.

  8. N. S. Belousova, O. G. Glotov, and G. S. Surodin, “Fragmentation and Formation of Condensed Products upon Combustion of Titanium Particles in Air," in 50th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2019), p. 13(1–14).

  9. N. S. Belousova, O. G. Glotov, and A. V. Guskov, “Study of the Free Falling Particles Trajectory at the Burning Monolithic Titanium Particles," J. Phys.: Conf. Ser. 1214 (012010), 1–7 (2019); https://iopscience.iop.org/article/10.1088/1742-6596/ 1214/1/012010/pdf.

    Article  Google Scholar 

  10. N. S. Belousova, O. G. Glotov, and G. S. Surodin, “Fragmentation and Formation of the Condensed Products during Combustion of Titanium Particles in Air," in 8th Eur. Conf. for Aeronautics and Space Sciences (EUCASS 2019), Spain, Madrid, 1–4 July, 2019, pp. 1–10; DOI: 10.13009/EUCASS2019-258; DOI: https://www.eucass.eu/index.php/component/docindexer/?task=download&id=5905.

  11. O. G. Glotov, N. S. Belousova, I. V. Reshetnikov, V. V. Karasev, and G. S. Surodin, “Oxide Products of the Titanium Particles Burning in Air," in High Energy Materials: Demilitarization, Antiterrorism and Civil Applications, Book of Abstr. XV Int. Workshop HEMs-2019, Monaco (Principality of Monaco), 28–31 October, 2019, pp. 8–13; https://elibrary.ru/item.asp? id=41503000&.

  12. R. S. Zakharov and O. G. Glotov, “Combustion Characteristics of Pyrotechnic Compositions with Powdered Titanium," Vestn. Novisib. Gos. Univ., Ser. Fiz. 2 (3), 32–40 (2007).

    Article  Google Scholar 

  13. O. G. Glotov, “Combustion of Spherical Agglomerates of Titanium in Air. II. Experimental Results," Fiz. Goreniya Vzryva 49 (3), 58–71 (2013) [Combust., Expl., Shock Waves 49 (3), 307–319 (2013); https://doi.org/10.1134/S0010508213030076].

    Article  Google Scholar 

  14. O. G. Glotov, “Ignition and Combustion of Titanium Particles. Experimental Methods and Results," Usp. Fiz. Nauk, 189 (2), 135–171 (2019) [Phys.-Usp. 62 (20), 131–165 (2019); DOI: 10.3367/UFNe.2018.04.038349].

    Article  ADS  Google Scholar 

  15. O. G. Glotov and V. E. Zarko, “Formation of Nanosized Products in Combustion of Metal Particles," in Energetic Nanomaterials: Synthesis, Characterization, and Application (Elsevier, 2016), pp. 285–321.

  16. Aerosol Calculator Program (2012); http://cires. colorado.edu/jimenez-group/Reference/aerocalc.zip// www.cheresources.com/che-links/content/particle-technology/aerosol-calculator-program. (Access date December 6, 2021.)

  17. A. A. Afifi and S. P. Azen, Statistical Analysis: A Computer-Oriented Approach (Academic Press, 1972).

    MATH  Google Scholar 

  18. J. Taylor, An Introduction to Error Analysis (Univ. Sci. Books, 1982).

    Book  Google Scholar 

  19. SETKA Program Divides a Photo into Parts (2018); https://bombina.com/setka.htm. (June 12, 2021.)

  20. O. G. Glotov, “Image Processing of the Fractal Aggregates Composed of Nanoparticles," Russ. J. Phys. Chem. A 82 (13), 2213–2218 (2008); DOI: 10.1134/S0036024408130098.

    Article  ADS  Google Scholar 

  21. L. Ya. Gradus, Manual of Dispersion Analysis by the Microscopy Method (Khimiya, Moscow, 1979) [in Russian].

    Google Scholar 

  22. ScopePhoto Image Software Ver. 3.1.386 (2009); http://labx.narod.en/documents/scope_photo_image_ software.html.

  23. O. G. Glotov and V. Ya. Zyryanov. “Condensed Combustion Products of Aluminized Propellants. I. A Technique for Investigating the Evolution of Dispersed-Phase Particles," Fiz. Goreniya Vzryva 31 (1), 74–80, (1995) [Combust., Expl., Shock Waves 31 (1), 72–78 (1995); https://doi.org/10.1007/BF00755960].

    Article  Google Scholar 

  24. I. E. Molodetsky, E. L. Dreizin, E. P. Vicenzi, and C. K. Law, “Phases of Titanium Combustion in Air," Combust. Flame 112 (4), 522–532 (1998); DOI: 10.1016/S0010-2180(97)00146-6.

    Article  Google Scholar 

  25. Physicochemical Properties of Oxides: Handook, Ed. by G. V. Samsonov (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Glotov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 6, pp. 51-65. https://doi.org/10.15372/FGV20220605.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glotov, O.G., Belousova, N.S. & Surodin, G.S. Combustion of Large Monolithic Titanium Particles in Air. II. Characteristics of Condensed Combustion Products. Combust Explos Shock Waves 58, 674–687 (2022). https://doi.org/10.1134/S0010508222060053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222060053

Keywords

Navigation