Skip to main content
Log in

Modeling of an Irregular Cellular Structure of the Detonation Wave in a Two-Fuel Mixture

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A two-stage reduced model of chemical kinetics of detonation combustion of a mixture of two fuels, i.e., hydrogen and carbon oxide (syngas), with an oxidizer is proposed. Based on this model, a two-dimensional numerical simulation of the parameters of an irregular cellular structure of the detonation wave in the considered binary mixture of two fuels with an oxidizer is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Trotsyuk, “Numerical Simulation of the Structure of Two-Dimensional Gaseous Detonation in an H2–O2–Ar Mixture,” Fiz. Goreniya Vzryva 35 (5), 93–103 (1999) [Comb., Expl., Shock Waves 35 (5), 549–558 (1999)].

    Google Scholar 

  2. P. A. Fomin, A. V. Trotsyuk, and A. A. Vasil’ev, “Approximate Model of Chemical Reaction Kinetics for Detonation Processes in Mixture of CH4 with Air,” Combust. Sci. Technol. 186 (10-11), 1716–1735 (2014).

    Article  Google Scholar 

  3. Combustion Chemistry, Ed. by W. C. Gardiner (Jr.) (Springer Verlag, 1984).

    Google Scholar 

  4. Yu. A. Nikolaev and D. V. Zak, “Agreement of Models of Chemical Reactions in Gases with the Second Law of Thermodynamics,” Fiz. Goreniya Vzryva 24 (4), 87–90 (1988) [Combust., Expl., Shock Waves 24 (4), 461–464 (1988)].

    ADS  Google Scholar 

  5. A. A. Vasil’ev, “Ignition Delay in Multifuel Mixtures,” Fiz. Goreniya Vzryva 43 (3), 42–46 (2007) [Combust., Expl., Shock Waves 43 (3), 282–285 (2007)].

    MathSciNet  Google Scholar 

  6. Yu. A. Nikolaev, A. A. Vasil’ev, and V. Yu. Ul’yanitskii, “Gas Detonation and its Application in Engineering and Technologies (Review),” Fiz. Goreniya Vzryva 39 (4), 22–54 (2003) [Combust., Expl., Shock Waves 39 (4), 382–410 (2003)].

    Google Scholar 

  7. A. A. Vasil’ev, “Near-Critical Regimes of Gas Detonation,” Doct. Dissertation in Phys.-Math. Sci. (La-vrentyev Inst. of Hydrodynamics, Sib. Branch, Russian Acad. of Sci., Novosibirsk, 1995).

    Google Scholar 

  8. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  9. S. Yamamoto and H. Daiguji, “Higher-Order-Accurate Upwind Schemes for Solving the Compressible Euler and Navier–Stokes Equations,” Computer Fluids 22 (2/3), 259–270 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Daiguji, X. Yuan, and S. Yamamoto, “Stabilization of Higher-Order High Resolution Schemes for the Compressible Navier–Stokes Equation,” Int. J. Num. Meth. Heat Fluid Flow 7 (2/3), 250–274 (1997). 389

    Article  MATH  Google Scholar 

  11. S. R. Chakravarthy and S. Osher, “A New Class of High Accuracy TVD Schemes for Hyperbolic Conservation Laws,” in Proc. of the AIAA 23rd Aerospace Sci. Meeting, Reno, 1985; AIAA Paper No. 85-0363 (1985).

    Google Scholar 

  12. S.-Y. Lin and Y.-S. Chin, “Comparison of Higher Resolution Euler Schemes for Aeroacoustic Computations,” AIAA J. 33, 237–245 (1995).

    Article  ADS  MATH  Google Scholar 

  13. P. Batten, M. A. Leschziner, and U. C. Goldberg, “Average-State Jacobians and Implicit Methods for Compressible Viscous and Turbulent Flows,” J. Com-put. Phys. 137 (1), 38–78 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. F. Coquel and B. Perthame, “Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics,” SIAM J. Numer. Anal. 35 (6), 2223–2249 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. W. Shen and X. Zhong, “Semi-Implicit Runge–Kutta Schemes for Non-Autonomous Differential Equations in Reactive Flow Computations,” in Proc. AIAA 27th Fluid Dynamics Conf., New Orleans, LA, June 17–20, 1996; AIAA Paper No. 96–1969 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Fomin.

Additional information

Original Russian Text © A.V. Trotsyuk, P.A. Fomin.

Published in Fizika Goreniya i Vzryva, Vol. 55, No. 4, pp. 15–20, July–August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trotsyuk, A.V., Fomin, P.A. Modeling of an Irregular Cellular Structure of the Detonation Wave in a Two-Fuel Mixture. Combust Explos Shock Waves 55, 384–389 (2019). https://doi.org/10.1134/S0010508219040026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508219040026

Keywords

Navigation