Skip to main content

Numerical Simulation of Combustion Process for Two-Phase Fuel Flows Related to Pulse Detonation Engines

  • Conference paper
  • First Online:
30th International Symposium on Shock Waves 1
  • 2141 Accesses

Abstract

In this study, combustion process is simulated for two-phase fuel flows (droplets of the liquid fuel and gas mixture of the fuel vapor and oxygen) using a combination of Lagrangian–Eulerian approaches. The Lagrangian is used to track for the liquid fuel droplets in the gas mixture region, while the Eulerian is used to gas mixture features accordingly. A two-way coupling is employed to take into account the interaction between gas mixture and liquid droplets. Evaporation process is followed D2-law with satisfaction of mass conservation. A reduced chemical kinetic model is employed instead of the detailed chemistry of fuel. The obtained numerical results are used to study and analyze the combustion process and physical insights. The effects of droplet size on the detonation characteristics are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kailasanath, K.: Recent developments in the research on pulse detonation engines. AIAA J. 41, 145–159 (2003)

    Article  Google Scholar 

  2. Dabora, E.K., Ragland, K.W., Nicholls, J.A.: Droplet size effects in spray detonation. Proc. Combust. Inst. 12, 19–26 (1969)

    Article  Google Scholar 

  3. Ragland, K.W., Dabora, E.K., Nicholls, J.A.: Observed structure of spray detonations. Phys. Fluids 11, 2377–2389 (1968)

    Article  Google Scholar 

  4. Bowen, J.R., Ragland, K.W., Steffs, F.J., Loflin, T.G.: Heterogeneous detonation supported fuel fogs or films. Proc. Combust. Inst. 13, 1131–1139 (1971)

    Article  Google Scholar 

  5. Bull, D.C., McLeod, M.A., Mizner, G.A.: Detonation of unconfined fuel aerosols. Prog. Astronaut. Aeronaut. 75, 48–60 (1981)

    Google Scholar 

  6. Brophy, C.M., Netzer, D.W., Sinlibali, J., Johnson, R.: High speed deflagration to detonation: fundamentals and control. ELEX-KM, Moscow (2001)

    Google Scholar 

  7. Knappe, B.M., Adwards, CF.: Results of decane/propane split-fuelled spray detonation. Paper presented at the 16th ONR propulsion meeting, Los Angeles CA, 9–11 June, (2003).

    Google Scholar 

  8. William, F.A.: Structure of detonations in diluted spray. Phys. Fluids 4, 1434–1443 (1961)

    Article  MathSciNet  Google Scholar 

  9. Borisov, A.A., Gelfand, B.E., Gubin, S.A., Kagarko, S.M., Podgrebenkov, A.L.: The reaction zone of two-phase detonations. Astronautics Acta 15, 411–417 (1970)

    Google Scholar 

  10. Chang, E.J., Kailasanath, K.: Shock waves interactions with particles and fuel droplets. Shock Waves 12, 333–341 (2003)

    Article  MATH  Google Scholar 

  11. Cheatham, A., Kailasanath, K.: Numerical modelling of liquid-fuelled detonations in tubes. Combust. Theory Modell. 9, 23–48 (2005)

    Article  MATH  Google Scholar 

  12. Ajmani, K., Kundu, K., Penko, P. F.: A study on detonation of JET-A using reduced mechanism. 48th AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, 4–7 January, (2010)

    Google Scholar 

  13. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shen, Y., Zha, G., Chen, X.: High order conservative differencing for viscous terms and the application to vortex induced vibration flows. J. Comput. Phys. 228(22), 8283–8300 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Young, T.R., Boris, J.P.: A numerical technique for solving stiff ordinary differential equations associated with the chemical kinetics of reactive-flow problems. J. Phys. Chem. 81(25), 2424–2427 (1977)

    Article  Google Scholar 

  16. Poinsot, T., Veynante, D.: In Edwards, R.T. (Ed.) Theoretical and numerical combustion. 2nd edn. (2005)

    Google Scholar 

  17. Schiller, L., Naumann, A.Z.: A drag coefficient correlation. VDI Zeitung 77, 318–332 (1935)

    Google Scholar 

  18. Igra, O., Takayama, K.: Shock tube study of the drag coefficient of a sphere in non-stationary flows. Proc. R. Soc. Lond. A. 442, 231–247 (1993)

    Article  Google Scholar 

  19. Ranz, W.E., Marshall, W.R.: Evaporation from drops. Chem. Eng. Prog. 48, 141–146 (1952)

    Google Scholar 

  20. Vasu, S.S., Davidson, D.D., Hanson, R.K.: Jet fuel ignition delay times: shock tube experiments over wide conditions and surrogate model predictions. Combust. Flames 152, 125–143 (2008)

    Article  Google Scholar 

  21. Akbar, R., Thibault, P.A., Harris, P.G., Lussier, L.S., Zhang, F., Murray, S.B., Gerrard, K.: Detonation properties of unsensitized and sensitized JP10 and Jet-A fuels in air for pulse detonation engines. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 16–19 July 2000, Huntsville, AL. (2000)

    Google Scholar 

  22. https://cearun.grc.nasa.gov

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Bo Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Nguyen, V.B., Jiun-Ming, L., Juay, T.C., Khoo, BC. (2017). Numerical Simulation of Combustion Process for Two-Phase Fuel Flows Related to Pulse Detonation Engines. In: Ben-Dor, G., Sadot, O., Igra, O. (eds) 30th International Symposium on Shock Waves 1. Springer, Cham. https://doi.org/10.1007/978-3-319-46213-4_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46213-4_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46211-0

  • Online ISBN: 978-3-319-46213-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics