Skip to main content
Log in

Combustion chemistry of ternary blends of hydrogen and C1–C4 hydrocarbons at atmospheric pressure

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Interest in the combustion chemistry of multifuel blends is motivated by the need to study the combustion of natural gas, which is known to be a mixture of alkanes. The present study performed using molecular beam mass spectrometry and numerical modeling has shown that the width of the zones of hydrogen and methane consumption in the H2/CH4/C3H8/O2/Ar flame and the width of the zones of methane and propane consumption in the CH4/C3H8/C4H10/O2/Ar flame differ significantly from each other. The causes of this phenomenon were determined by analyzing the modeling results. It has been found that in the presence of heavier compounds, lighter fuels, such as H2 and CH4, are formed, which reduces the total rate of their consumption and, hence expands the zone of their consumption in the flame. The influence of the presence of hydrogen in the fuel mixture on the concentration of C2 hydrocarbons has also been studied. It has been established that the addition of hydrogen reduces the maximum concentration of ethane, ethylene, and acetylene in the flame, and the fraction of unsaturated C2 hydrocarbons with respect to saturated ones also decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Warnatz, “The Structure of Laminar Alkane-, Alkene-, and Acetylene Flames,” Proc. Symp. (Int.) Combust.18 (1), 369–384 (1981).

    Article  Google Scholar 

  2. A. El Bakali, P. Dagaut, L. Pillier, P. Desgroux, J.-F. Pauwels, A. Rida, and P. Meunier, “Experimental and Modeling Study of the Oxidation of Natural Gas in a Premixed Flame, Shock Tube, and Jet-Stirred Reactor,” Combust. Flame 137, 109–128 (2004).

    Article  Google Scholar 

  3. T. G. Scholte and P. B. Vaags, “The Burning Velocity of Hydrogen-Air Mixtures and Mixtures of Some Hydrocarbons with Air,” Combust. Flame 3, 495–501 (1959).

    Article  Google Scholar 

  4. I. Yamaoka and H. Tsuji, “Determination of Burning Velocity using Counterflow Flames,” Proc. Symp. (Int.) Combust. 20 (1), 1883–1892 (1984).

    Article  Google Scholar 

  5. L. K. Tseng, M. A. Ismail, and G. M. Faeth, “Laminar Burning Velocities and Markstein Numbers of Hydrocarbon/Air Flames,” Combust. Flame 95, 410–426 (1993).

    Article  Google Scholar 

  6. K. J. Bosschaart and L. P. H. de Goey, “The Laminar Burning Velocity of Flames Propagating in Mixtures of Hydrocarbons and Air Measured with the Heat Flux Method,” Combust. Flame 136, 261–269 (2004).

    Article  Google Scholar 

  7. C. G. Fotache, H. Wang, and C. K. Law, “Ignition of Ethane, Propane, and Butane in Counterflow Jets of Cold Fuel versus Hot Air under Variable Pressures,” Combust. Flame 117, 777–794 (1999).

    Article  Google Scholar 

  8. A. Burcat, K. Scheller, and A. Lifshitz, “Shock-Fube Investigation of Comparative Ignition Delay Times for C1–C5 Alkanes,” Combust. Flame 16, 29–33 (1971).

    Article  Google Scholar 

  9. D. Healy, D. M. Kalitan, C. J. Aul, E. L. Petersen, G. Bourque, and H. J. Curran, “Oxidation of C1–C5 Alkane Quinternary Natural Gas Mixtures at High Pressures,” Energy Fuels 24, 1521–1528 (2010).

    Article  Google Scholar 

  10. M. M. Holton, P. Gokulakrishnan, M. S. Klassen, R. J. Roby, and G. S. Jackson, “Second-Law Heat Release Modeling of a Compression Ignition Engine Fueled with Blends of Palm Biodiesel,” J. Eng. Gas Turbine Power 132, 091502 (2010).

    Article  Google Scholar 

  11. D. J. Beerer and V. G. McDonell, “An Experimental and Kinetic Study of Alkane Autoignition at High Pressures and Intermediate Temperatures,” Proc. Combust. Inst. 33, 301–307 (2011).

    Article  Google Scholar 

  12. T. Kamada, H. Nakamura, T. Tezuka, S. Hasegawa, and K. Maruta, “Study on Combustion and Ignition Characteristics of Natural Gas Components in a Micro Flow Reactor with a Controlled Temperature Profile,” Combust. Flame 161, 37–48 (2014).

    Article  Google Scholar 

  13. N. M. Marinov, W. J. Pitz, C. K. Westbrook, A. E. Lutz, A. M. Vincitore, and S. M. Senkan, “Chemical Kinetic Modeling of a Methane Opposed-Flow Diffusion Flame and Comparison to Experiments,” Proc. Combust. Inst. 27 (1), 605–613 (1998).

    Article  Google Scholar 

  14. M. V. Petrova and F. A. Williams, “A Small Detailed Chemical-Kinetic Mechanism for Hydrocarbon Combustion,” Combust. Flame 144, 526–544 (2006).

    Article  Google Scholar 

  15. “Natural Gas III, Combustion Chemistry Centre, National University of Ireland, Galway;” http://c3.unigalway.ie/naturalgas3.html.

  16. H. Wang, X. You, A. V. Joshi, S. G. Davis, A. Laskin, F. Egolfopoulos, and C. K. Law, “USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1–C4 Compounds;” http://ignis.usc.edu/USC Mech II.htm, May 2007.

    Google Scholar 

  17. SAUDI ARAMCO Mechanism Release v. 2.0 (Combustion Chemistry Centre, National University of Ireland, Galway, 2016); http://c3.nuigalway.ie/aramco2/download.html.

  18. N. Donohoe, A. Heufer, W. K. Metcalfe, H. J. Curran, M. L. Davis, O. Mathieu, D. Plichta, A. Morones, E. L. Petersen, and F. Güthe, “Ignition Delay Times, Laminar Flame Speeds, and Mechanism Validation for Natural Gas/Hydrogen Blends at Elevated Pressures,” Combust. Flame 161, 1432–1443 (2014).

    Article  Google Scholar 

  19. G. Yu, C. K. Law, and C. K. Wu, “Laminar Flame Speeds of Hydrocarbon + Air Mixtures with Hydrogen Addition,” Combust. Flame 63, 339–347 (1986).

    Article  Google Scholar 

  20. F. Halter, C. Chauveau and N. Djebaïli-Chaumeix, I. Gökalp, “Characterization of the Effects of Pressure and Hydrogen Concentration on Laminar Burning Velocities of Methane–Hydrogen–Air Mixtures,” Proc. Combust. Inst. 30, 201–208 (2005).

    Article  Google Scholar 

  21. E. Hu, Z. Huang, J. He, C. Jin, and J. Zheng, “Experimental and Numerical Study on Laminar Burning Characteristics of Premixed Methane–Hydrogen–Air Flames,” Int. J. Hydrogen Energy 34, 4876–4888 (2009).

    Article  Google Scholar 

  22. M. Ilbasa, A. P. Crayford, I. Yilmaz, P. J. Bowen, and N. Syred, “Laminar-Burning Velocities of Hydrogen-Air and Hydrogen–Methane–Air Mixtures: An Experimental Study,” Int. J. Hydrogen Energy 31, 1768–1779 (2009).

    Article  Google Scholar 

  23. F. H. V. Coppens and A. A. Konnov, “The Effects of Enrichment by H2 on Propagation Speeds in Adiabatic Flat and Cellular Premixed Flames of CH4 + O2 + CO2,” Fuel 87, 2866–2870 (2008).

    Article  Google Scholar 

  24. A. A. Konnov, R. Riemeijer, and L. P. H. de Goey, “Adiabatic Laminar Burning Velocities of CH4 + H2 + Air Flames at Low Pressures,” Fuel 89, 1392–1396 (2010).

    Article  Google Scholar 

  25. R. T. E. Hermanns, A. A. Konnov, R. J. M. Bastiaans, L. P. H. de Goey, K. Lucka, and H. Kohne, “Effects of Temperature and Composition on the Laminar Burning Velocity of CH4 + H2 + O2 + N2 Flames,” Fuel 89, 114–121 (2010).

    Article  Google Scholar 

  26. P. Dagaut and G. Dayma, “Hydrogen-Enriched Natural Gas Blend Oxidation under High-Pressure Conditions: Experimental and Detailed Chemical Kinetic Modelling,” Int. J. Hydrogen Energy 31, 505–515 (2006).

    Article  Google Scholar 

  27. S. De Ferrieres, A. El Bakali, B. Lefort, M. Montero, and J. F. Pauwels, “Experimental and Numerical Investigation of Low-Pressure Laminar Premixed Synthetic Natural Gas/O2/N2 and Natural Gas/H2/O2/N2 Flames,” Combust. Flame 154 (3), 601–623 (2008).

    Article  Google Scholar 

  28. J. P. Botha and D. B. Spalding, “The Laminar Flame Speed of Propane/Air Mixtures with Heat Extraction from the Flame,” Proc. Roy. Soc. Lond. A 225, 71 (1954).

    Article  ADS  Google Scholar 

  29. O. P. Korobeinichev, S. B. Ilyin, V. V. Mokrushin, and A. G. Shmakov, “Destruction Chemistry of Dimethyl Methylphosphonate in H2/O2/Ar Flame Studied by Molecular Beam Mass Spectrometry,” Combust. Sci. Technol. 116/117 (1–6), 51–67 (1996).

    Article  Google Scholar 

  30. T. A. Cool, K. Nakajima, K. A. Taatjes, A. McIlroy, P. R. Westmoreland, M. E. Law, and A. Morel, “Studies of a Fuel-Rich Propane Flame with Photoionization Mass Spectrometry,” Proc. Combust. Inst. 30, 1681–1688 (2005).

    Article  Google Scholar 

  31. I. E. Gerasimov, D. A. Knyazkov, S. A. Yakimov, T. A. Bolshova, A. G. Shmakov, and O. P. Korobeinichev, “Structure of Atmospheric-Pressure Fuel-Rich Premixed Ethylene Flame with and without Ethanol,” Combust. Flame 159 (5), 1840–1850 (2012).

    Article  Google Scholar 

  32. W. E. Kaskan, “The Dependence of Flame Remperature on Mass Burning Velocity,” Proc. Combust. Inst. 6, 134–141 (1957).

    Article  Google Scholar 

  33. C. R. Shaddix, “Correcting Thermocouple Measurements for Radiation Loss: A Critical Review,” in Proc. 33rd National Heat Transfer Conference, HTD99-282 (Albuquerque, New Mexico, 1999).

    Google Scholar 

  34. A. G. Shmakov, O. P. Korobeinichev, I. V. Rybitskaya, A. A. Chernov, D. A. Knyazkov, T. A. Bolshova, and A. A. Konnov, “Formation and Consumption of NO in H2 + O2 + N2 Flames Doped with NO or NH3 at Atmospheric Pressure,” Combust. Flame 157 (3), 556–565 (2010).

    Article  Google Scholar 

  35. O. P. Korobeinichev, A. G. Tereshchenko, I. D. Emel’yanov, A. L. Rudnitskii, S. Yu. Fedorov, L. V. Kuibida, and V. V. Lotov, “Substantiation of the Probe Mass-Spectrometric Method for Studying the Structure of Flames with Narrow Combustion Zones,” Fiz. Goreniya Vzryva 21 (5), 22–28 (1985) [Combust., Expl., Shock Waves 21 (5), 524–530 (1985)].

    Google Scholar 

  36. R. J. Kee, J. F. Grcar, M. D. Smooke, and J. A. Miller, “PREMIX. A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Names,” Report No. SAND85-8240 (Sandia National Laboratory, 1985).

    Google Scholar 

  37. R. J. Kee, F. M. Rupley, and J. A. Miller, “Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics,” Report SAND89-8009 (Sandia National Laboratory, 1989).

    Google Scholar 

  38. T. Turanyi, I. G. Zsely, and C. Frouzakis, “KINALC:A CHEMKIN Based Program for Kinetic Analysis;” www.chem.leeds.ac.uk/Combustion/Combustion.html.

  39. T. Turanyi, “Mechmod Version 1.4: Program for the Transformation of Kinetic Mechanisms;” www.chem.leeds.ac.uk/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Knyazkov.

Additional information

Original Russian Text © D.A. Knyazkov, V.M. Shvartsberg, A.M. Dmitriev, K.N. Osipova, A.G. Shmakov, O.P. Korobeinichev, A. Burluka.

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 5, pp. 3–12, September–October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazkov, D.A., Shvartsberg, V.M., Dmitriev, A.M. et al. Combustion chemistry of ternary blends of hydrogen and C1–C4 hydrocarbons at atmospheric pressure. Combust Explos Shock Waves 53, 491–499 (2017). https://doi.org/10.1134/S001050821705001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050821705001X

Keywords

Navigation