Skip to main content
Log in

Analysis of the mechanisms of ignition and combustion of i-C8H18–H2 and n-C10H22–H2 fuel blends in air

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The processes of ignition and combustion of i-C8H18–H2 and n-C10H22–H2 fuel blends in air are analyzed numerically. It is demonstrated that addition of hydrogen both to normal alkane (n-C10H22) and to alkane with a branched structure (i-C8H18) leads to an increase in the ignition delay time τind if the initial temperature of the mixture T 0 is lower than a certain value T l and, vice versa, to a decrease in τind at T 0 > T l. The greater the fraction of hydrogen in the mixture, the greater the change in τind. At sufficiently high temperatures (T 0 > T h), addition of a small amount of alkane (≈2–10%) to hydrogen reduces the ignition delay time. The value of Tl depends on the pressure of the fuel–air mixture and, to a smaller extent, on the n-alkane type. The value of T h also depends on the fraction of alkane in the fuel blend. If the initial pressure is sufficiently high (10 atm and more), addition of a small amount of i-C8H18 or n-C10H22 to the hydrogen–air mixture reduces the value of τind for all values of T 0. These features are caused by intense interaction of alkane and hydrogen oxidation kinetics. It is demonstrated that fuel blends consisting of hydrogen and n-C10H22 (i-C8H18) have a higher velocity of the laminar flame and wider limits of stable combustion than the hydrocarbons themselves. Nevertheless, a noticeable increase in the laminar flame velocity is observed only for the molar fraction of hydrogen in the fuel blend greater than 50%. In this case, it becomes possible to ensure stable combustion with a smaller fraction of NO in combustion products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Yu, C. K. Law, C. K. Wu, “Laminar Flame Speeds of Hydrocarbon + Air Mixtures with Hydrogen Addition,” Combust. Flame 63 (3), 339–347 (1986).

    Article  Google Scholar 

  2. F. Halter, C. Chauveau, N. Djebayli-Chaumeix, “Characterization of the Effects of Pressure and Hydrogen Concentration on Laminar Burning Velocities of Methane–Hydrogen–Air Mixtures,” Proc. Combust. Inst. 30 (1), 201–208 (2005).

    Article  Google Scholar 

  3. E. Hu, Z. Huang, J. He, C. Jin, J. Zheng, “Experimental and Numerical Study on Laminar Burning Characteristics of Premixed Methane–Hydrogen–Air Flames,” Int. J. Hydrogen Energy 34 (11), 4876–4888 (2009).

    Article  Google Scholar 

  4. N. Donohoe, A. Heufer, W. K. Metcalfe, H. J. Curran, M. L. Davis, O. Mathieu, D. Plichta, A. Morones, E. L. Petersen, F. Güthe, “Ignition Delay Times, Laminar Flame Speeds, and Mechanism Validation for Natural Gas/Hydrogen Blends at Elevated Pressures,” Combust. Flame 161 (6), 1432–1443 (2014).

    Article  Google Scholar 

  5. C. Tang, Z. Huang, C. Jin, J. He, J. Wang, X. Wang, et al., “Laminar Burning Velocities and Combustion Characteristics of Propane–Hydrogen–Air Premixed Flames,” Int. J. Hydrogen Energy 33 (18), 4906–4914 (2008).

    Article  Google Scholar 

  6. T. Tahtouh, F. Halter, C. Mounaïm-Rousselle, “Laminar Premixed Flame Characteristics of Hydrogen Blended Iso-Octane–Air–Nitrogen Mixtures,” Int. J. Hydrogen Energy 36 (1), 985–991 (2011).

    Article  Google Scholar 

  7. N. Bouvet, F. Halter, C. Chauveau, Y. Yoon, “On the Effective Lewis Number Formulations for Lean Hydrogen/Hydrocarbon/Air Mixtures,” Int. J. Hydrogen Energy 38 (14), 5949–5960 (2013).

    Article  Google Scholar 

  8. E. L. Petersen, J. M. Hall, S. D. Smith, J. de Vries, A. R. Amadio, M. W. Crofton, “Ignition of Lean Methane-Based Fuel Blends at Gas Turbine Pressures,” J. Eng. Gas Turbines Power 129, 937–944 (2007).

    Article  Google Scholar 

  9. Y. Zhang, Z. Huang, L. Wei, J. Zhang, C. K. Law, “Experimental and Modeling Study on Ignition Delays of Lean Mixtures of Methane, Hydrogen, Oxygen, and Argon at Elevated Pressures,” Combust. Flame 159 (3), 918–31 (2012).

    Article  Google Scholar 

  10. L. Pan, Y. Zhang, J. Zhang, Z. Tian, Z. Huang, “Shock Tube and Kinetic Study of C2H6/H2/O2/ArMixtures at Elevated Pressures,” Int. J. Hydrogen Energy 39 (11), 6024–6033 (2014).

    Article  Google Scholar 

  11. X. Man, C. Tang, L. Wei, L. Pan, Z. Huang, “Measurements and Kinetic Study on Ignition Delay Times of Propane/Hydrogen in Argon Diluted Oxygen,” Int. J. Hydrogen Energy 38 (5), 2523–2530 (2013).

    Article  Google Scholar 

  12. N. S. Titova, P. S. Kuleshov, O. N. Favorskii, A. M. Starik, “The Features of Ignition and Combustion of Composite Propane–Hydrogen Fuel: Modeling Study,” Int. J. Hydrogen Energy 39 (12), 6764–6773 (2014).

    Article  Google Scholar 

  13. S. K. Aggarwal, O. Awomolo, K. Akber, “Ignition Characteristics of Heptane–Hydrogen and Heptane–Methane Fuel Blends at Elevated Pressures,” Int. J. Hydrogen Energy 36 (23), 15392–15402 (2011).

    Article  Google Scholar 

  14. S. M. Frolov, S. N. Medvedev, V. Ya. Basevich, F. S. Frolov, “Self-Ignition of Hydrocarbon–Hydrogen–Air Mixtures,” Int. J. Hydrogen Energy 38 (10), 4177–4184 (2013).

    Article  Google Scholar 

  15. S. Jain, D. Li, S. K. Aggarwal, “Effect of Hydrogen and Syngas Addition on the Ignition of Iso-Octane/Air Mixtures,” Int. J. Hydrogen Energy 38 (10), 4163–4176 (2013).

    Article  Google Scholar 

  16. X. Hui, C. Zhang, M. Xia, C.-J. Sung, “Effects of Hydrogen Addition on Combustion Characteristics of n-Decane/Air Mixtures,” Combust. Flame 161 (9), 2252–2262 (2014).

    Article  Google Scholar 

  17. S. Wang, C. Ji, B. Zhang, X. Liu, “Performance of a Hydroxygen-Blended Gasoline Engine at Different Hydrogen Volume Fractions in the Hydroxygen,” Int. J. Hydrogen Energy 37 (17), 13209–13219 (2012).

    Article  Google Scholar 

  18. Y. Karagöz, L. Yüksek, T. Sandalci, A. S. Dalkiliü, “An Experimental Investigation on the Performance Characteristics of a Hydroxygen Enriched Gasoline Engine with Water Injection,” Int. J. Hydrogen Energy 40 (1), 692–702 (2015).

    Article  Google Scholar 

  19. J. Burguburu, G. Cabot, B. Renou, A. Boukhalfa, M. Cazalens, “Comparisons of the Impact of Reformer Gas and Hydrogen Enrichment on Flame Stability and Pollutant Emissions for a Kerosene/Air Swirled Flame with an Aeronautical Fuel Injector,” Int. J. Hydrogen Energy 36 (11), 6925–6936 (2011).

    Article  Google Scholar 

  20. H. J. Curran, P. Gaffuri, W. J. Pitz, C. K. Westbrook, “A Comprehensive Modeling Study of Iso-Octane Oxidation,” Combust. Flame 129 (3), 253–280 (2002).

    Article  Google Scholar 

  21. N. S. Titova, S. A. Torokhov, and A. M. Starik, “On Kinetic Mechanisms of n-Decane Oxidation,” Fiz. Goreniya Vzryva 47 (2), 3–22 (2011) [Combust., Expl., Shock Waves 47 (2), 129–146 (2011)].

    Google Scholar 

  22. V. E. Kozlov, A. M. Starik, N. S. Titova, and I. Yu. Vedishchev, “On Mechanisms of Formation of Environmentally Harmful Compounds in Homogeneous Combustors,” Fiz. Goreniya Vzryva 49 (5), 17–33 (2013) [Combust., Expl., Shock Waves 49 (5), 520–535 (2013)].

    Google Scholar 

  23. A. M. Starik, V. E. Kozlov, N. S. Titova, “On the Influence of Singlet Oxygen Molecules on Characteristics of HCCI Combustion: A Numerical Study,” Combust. Theory Model. 17 (4), 579–609 (2013).

    Article  ADS  Google Scholar 

  24. K. Fieweger, R. Blumenthal, G. Adomeit, “Self-Ignition of S. I. Engine Model Fuels: A Shock Tube Investigation at High Pressure,” Combust. Flame 109 (4), 599–619 (1997).

    Article  Google Scholar 

  25. U. Pfahl, K. Fieweger, G. Adomeit, “Self-Ignition of Diesel-Relevant Hydrocarbon–Air Mixtures under Engine Conditions,” Proc. Combust. Inst. 26 (1), 781–789 (1996).

    Article  Google Scholar 

  26. A. Kéromnès, W. K. Metcalfe, K. A. Heufer, et al., “An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas Mixture Oxidation at Elevated Pressures,” Combust. Flame 160 (6), 995–1011 (2013).

    Article  Google Scholar 

  27. R. J. Kee, F. M. Rupley, J. A. Miller, et al., CHEMKIN Release 4.0 (Reaction Design Inc., San Diego, 2004).

    Google Scholar 

  28. Y. Liu, M. Jia, M. Xie, B. Pang, “Improvement on a Skeletal Chemical Kinetic Model of Iso-Octane for Internal Combustion Engine by using a Practical Methodology,” Fuel 103, 884–891 (2013).

    Article  Google Scholar 

  29. A. M. Starik, L. V. Bezgin, V. I. Kopchenov, N. S. Titova, S. A. Torokhov, “Kinetic Analysis of n-Decane–Hydrogen Blend Combustion in Premixed and Non-Premixed Supersonic Flows,” Combust. Theory Model. 20 (1), 99–130 (2016).

    Article  ADS  Google Scholar 

  30. K. Kumar, J. E. Freeh, C. J. Sung, Y. Huang, “Laminar Flame Speeds of Preheated Iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures,” J. Propul. Power 23 (2), 428–436 (2007).

    Article  Google Scholar 

  31. Z. Zhao, J. Li, A. Kazakov, F. L. Dryer, S. P. Zeppieri, “Burning Velocities and a High-Temperature Skeletal Kinetic Model for n-Decane,” Combust. Sci. Technol. 177 (1), 89–106 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Titova.

Additional information

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 6, pp. 13–25, November–December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titova, N.S., Torokhov, S.A., Favorskii, O.N. et al. Analysis of the mechanisms of ignition and combustion of i-C8H18–H2 and n-C10H22–H2 fuel blends in air. Combust Explos Shock Waves 52, 631–642 (2016). https://doi.org/10.1134/S0010508216060022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216060022

Keywords

Navigation