Skip to main content
Log in

New directions in the area of modern energetic polymers: An overview

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Energetic polymers containing nitro, nitrato, and azido groups release high energy during combustion and thereby increase the performance of the systems. A number of energetic polymers have been found suitable for use as binders in high-performance propellant and explosive formulations. This review describes the synthetic and application aspects of various modern energetic polymers for explosive formulations and propellants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Colclough, H. Desai, R. W. Millar, M. J. Stewart, and P. Golding, “Energetic Polymers as Binders in Composite Propellants and Explosives,” Polym. Adv. Technol. 5, 554–560 (1994).

    Article  Google Scholar 

  2. A. Meßmer and J. Bohnlein-Maßu, “Untersuchungen zum Einsatz von POLYNIMMO in Treibladungspulvern,” in 28th Int. Annu. Conf. ICT (Karlsruhe, Germany, 1997), p. 116–121.

    Google Scholar 

  3. P. F. Bunyan, “An Investigation of the Thermal Decomposition of Poly(3-nitratomethyl-3-methyloxetane),” Thermochim. Acta 207, 147 (1992).

    Article  Google Scholar 

  4. H. J. Desai, A. V. Cunliffe, J. Hamid, P. J. Honey, and M. J. Stewart, “Synthesis and Characterization of a,w-Hydroxy and Nitrato Telechelic Oligomers of 3,3-(nitratomethyl) Methane Oxetane (NIMMO) and Glycidyl Nitrate (GLYN),” Polymer 37 (15), 3461 (1996).

    Article  Google Scholar 

  5. R. W. Willer, R. S. Day, and A. G. Stern, “Process for Producing Improved Poly (Glycidyl Nitrate),” US Patent No. 5120827 (1992).

  6. J. Bobinski and Y. P. Carignan, “Study of the Nitration of Methyl Cellulose,” J. Appl. Polym. Sci. 11, 727 (1967).

    Article  Google Scholar 

  7. M. Starussr, E. Orresj, H. Helana, N. Raftb, R. Itnera, and N. D. Deane, “Synthesis and Characterization of Picryl Cellulose,” Can. J. Chem. 65, 1891 (1987).

    Article  Google Scholar 

  8. U. C. Durgapal, P. K. Dutta, S. C. Mishra, and J. Pant, “Investigations on Polyvinyl Nitrate As a High Energetic Material,” Propell., Explos., Pyrotech. 20 (2), 64 (1995).

    Article  Google Scholar 

  9. C. M. Roland and G. G. A. Bohm, “Macromolecular Diffusion and the Autoadhesion of Polybutadiene Macromolecules,” Macromolecules 18, 1310 (1985).

    Article  ADS  Google Scholar 

  10. M. E. Colclough and N. C. Paul, “Nitrated Hydroxy- Terminated Polybutadiene: Synthesis and Properties,” Amer. Chem. Soc.: ACS Symp. Ser. 623, 97–103 (1996).

    Google Scholar 

  11. B. Florczak, R. Bogusz, W. Skupinski, et al., “Study of the Effect of Nitrated Hydroxyl-Terminated Polybutadiene (NHTPB) on the Properties of Heterogeneous Rocket Propellants,” Centr. Eur. J. Energet. Mater. 12 (4), 841–854 (2015).

    Google Scholar 

  12. Q. Wang, L. Wang, X. Zhang, and Zh. Mi, “Thermal Stability and Kinetic of Decomposition of Nitrated HTPB,” J. Hazard. Mater. 172, 1659–1664 (2009).

    Article  Google Scholar 

  13. E. Diaz, P. Brousseau, G. Ampleman, and R. E. Prud’homme, “Heats of Combustion and Formation of New Energetic Thermoplastic Elastomers Based on GAP, polyNIMMO and polyGLYN,” Propell., Explos., Pyrotech. 28 (3), 101–106 (2003).

    Article  Google Scholar 

  14. C. J. Campbell, “Energetic Oxetane Propellants,” US Patent No. 6217682 (2001).

    Google Scholar 

  15. M. Stewart, A. Arber, G. Bragg, et al., “Novel Energetic Monomers and Polymers Prepared Using Dinitrogen Pentoxide Chemistry,” in 21th Int. Annu. Conf. ICT (Karlsruhe, Germany, 1990), p. 3.

    Google Scholar 

  16. A. J. Sanderson et al., “Process for Making Stable Cured Poly(Glycidyl Nitrate),” US Patent No. 6730181 (2004).

    Google Scholar 

  17. M. Singh, B. K. Kanungo, and T. K. Bansal, “Effect of Low Molecular Weight Diol and Triol on Hydroxy-Terminated Polybutadiene Prepolymer Based Polyurethane Network Properties,” Ind. J. Eng. Mater. Sci. 7, 378–384 (2000).

    Google Scholar 

  18. R. L. Millar, A. G. Stern, and R. S. Day, “Process for Producing Improved Poly(glycidyl nitrate),” US Patent No. 5017356 (1992).

    Google Scholar 

  19. H. J. Desai, A. V. Cunliffe, R. W. Millar, et al., “Synthesis of Narrow Molecular Weight a,?-Hydroxy Telechelic Poly(glycidyl nitrate) and Estimation of Theoretical Heat of Explosion,” Polymer 37 (15), 3471–3476 (1996).

    Article  Google Scholar 

  20. M. B. Talawar R. Sivabalan, M. Anniyappan, G. M. Gore, S. N. Asthana, and B. R. Gandhe, “Emerging Trends in Advanced High Energy Materials,” Fiz. Goreniya Vzryva 43 (1), 72–85 (2007) [Combust., Expl., Shock Waves 43 (1), 62–72 (2007).

    Google Scholar 

  21. B. Kosowski, C. Meyersand, D. Robitelle, et al., “Cyclodextrin Polymer Nitrate,” in 31st Int. Annu. Conf. ICT (Karlsruhe, Germany, 2000), p. 12.

    Google Scholar 

  22. J. P. Consaga, “Energetic Composites of Cyclodextrin Nitrate Esters and Nitrate Ester Plasticizers,” US Patent No. 5114506 (1992).

  23. Y. M. Mohan and K. M. Raju, “Synthesis and Characterization of Low Molecular Weight Azido Polymers as High Energetic Plasticizers,” Int. J. Polym. Anal. Charact. 9, 289 (2004).

    Article  Google Scholar 

  24. J. E. Flanagan, “Azido Esters,” US Patent No. 4419286 (1983).

  25. P. T. Berkowitz, “Synthesis and Polymerization of 3-azidooxetane,” US Patent No. 4414384 (1983).

  26. Y. M. Mohan, “Synthesis, Spectral and DSC Analysis of Glycidyl Azide Polymers Containing Different Initiating Diol Units,” J. App. Polym. Sci. 93 (5), 2157 (2004).

    Article  Google Scholar 

  27. S. Pisharath and H. G. Ang, “Synthesis and Thermal Decomposition of GAP–Poly(BAMO) Copolymer,” Polym. Degrad. Stabil. 92 (7), 1365 (2007).

    Article  Google Scholar 

  28. A. J. Bellamy, D. S. King, and P. Golding, “Synthesis of Energetic Polymers by the Introduction of Energetic Groups into Polymeric Primary and Secondary Amines,” Propell., Explos., Pyrotech. 29, 166 (2004).

    Article  Google Scholar 

  29. A. J. Paraskos, “One Pot Procedure for Poly Glycidyl Nitrate end Modification,” US Patent No. 7714078 B2 (2010).

    Google Scholar 

  30. E. S. Kim, V. Yang, and Y.-C. Liau, “Modeling of HMX/GAP Pseudo-Propellant Combustion,” Combust. Flame 131, 227–245 (2002).

    Article  Google Scholar 

  31. W. B. H. Leeming, E. J. Marshall, H. Bull, and M. J. Rodgers, “An Investigation into PolyGLYN Cure Stability,” in 27th Int. Annu. Conf. ICT (Karlsruue, Germany, 1996).

    Google Scholar 

  32. J. I. S. Oliveira, M. F. Diniz, A. M. Kawamoto, and R. C. L. Dutra, “MIR/NIR/FIR Characterization of Poly-AMMO and Poly-BAMO and Their Precursors as Energetic Binder to be Used in Solid Propellants,” Propell., Explos., Pyrotech. 31, 395–400 (2006).

    Article  Google Scholar 

  33. T. Miyazaki and N. Kubota, “Energetics of BAMO,” Propell., Explos., Pyrotech. 17, 5–9 (1992).

    Article  Google Scholar 

  34. V. G. Kiselev, P. B. Cheblakov, and N. P. Gritsan, “Tautomerism and Thermal Decomposition of Tetrazole: High-Level ab Initio Study,” J. Phys. Chem. A 115 (9), 1743 (2011).

    Article  Google Scholar 

  35. J. R. Carney, J. M. Lightstone, P. Thomas, and J. Richard, “Fuel-Rich Explosive Energy Release: Oxidizer Concentration Dependence,” Propell., Explos., Pyrotech. 34 (4), 291 (2009).

    Article  Google Scholar 

  36. D. Stamatis, X. Jiang, E. Beloni, and E. L. Dreizin, “Aluminum Burn Rate Modifiers Based on Reactive Nanocomposite Powders,” Propell., Explos., Pyrotech. 35 (3), 260 (2010).

    Article  Google Scholar 

  37. P. Simoes, L. Pedroso, and A. Portugal, “New Propellant Component. Part II. Study of a PSAN/DNAM/HTPB Based Formulations,” Propell., Explos., Pyrotech. 26, 278 (2001).

    Article  Google Scholar 

  38. L. M. Pedrosoa, M. Margarida, C. A. Castrob, et al., “Melamine/Epichlorohydrin Prepolymers: Syntheses and Characterization,” Polymer 46, 1766 (2005).

    Article  Google Scholar 

  39. D. W. Kaiser and J. K. Zane, “Alkoxylated Mixtures of di- and triamino-1,3,5-triazine-polyols and a Process for Their Production,” US Patent No. 3256281 (1966).

    Google Scholar 

  40. M. Kucharsky and J. Lubczak, “Synthesis of Polyetherols with s-Triazine Ring Catalyzed by Tetrabutylammonium Hydroxide,” Acta Polym. 42 (4), 186 (1991).

    Article  Google Scholar 

  41. J. Lubczak, “H-NMR Study of Reaction of Melamine with Oxiranes,” Appl. Polym. Sci. 58, 559 (1995).

    Article  Google Scholar 

  42. J. Lubczak, “H-NMR Study of the Reaction of Diacetylmelamine with Oxiranes,” Appl. Spectrosc. 51 (3), 438 (1997).

    Article  ADS  Google Scholar 

  43. J. Lubczak, “N,N -Diacetylmelamine as a Basic Material to Synthesize Polyetherols,” Acta Polym. 41 (8), 464 (1990).

    Article  Google Scholar 

  44. R. Lubczak, “Novel Phenol-Formaldehyde Resins, Resols Prepared Using Reactive Solvents,” Macromolec. Mater. Eng. 288 (1), 66 (2003).

    Article  Google Scholar 

  45. J. Lubczak, “N,N -Diacetylmelamine as a Basic Material to Synthesize Polyetherols,” Indian J. Chem. 33B, 651 (1994).

  46. Z. Shenshui and L. Quinaggio, “Synthesis and Polymerisation of Oligo (Oxyethylene) Macromonomer,” Chin. J. Polym. Sci. 11 (3), 261 (1993).

    Google Scholar 

  47. J. Lubczak, “Study of Reaction between N,N,N-Pentakis (Hydroxymethyl) Melamine and Ethylene or Propylene Oxide,” J. Appl. Polym. Sci. 65, 2589 (1997).

    Article  Google Scholar 

  48. J. Lubczak, “Synthesis of s-Triazine Polyetherols from Bis(methoxymethyl) Melamine and Oxiranes,” J. Appl. Polym. Sci. 66, 423 (1997).

    Article  Google Scholar 

  49. R. Lubczak, “Bifunctional Oligoetherols with Carbazole Ring,” J. Appl. Polym. Sci. 110 (6), 3501 (2008).

    Article  Google Scholar 

  50. H. Xue, H. Gao, and J. M. Shreeve, “Energetic Polymer Salts from 1-vinyl-1,2,4-triazole Derivatives,” J. Polym. Sci.: Part A: Polym. Chem. 46, 2414 (2008).

    Article  ADS  Google Scholar 

  51. V. N. Kizhnyaev, L. I. Vereshchagin, O. N. Verhozina, et al., “Triazole and Tetrazole Containing Energetic Compounds,” in Proc. 34th Int. Annu. Conf. ICT (Karlsruhe, Germany, 2003), p. 75.

    Google Scholar 

  52. V. A. Ostrovskii, M. S. Pevzner, T. P. Kofman, et al., “Energetic1,2,4-triazolesandtetrazoles. Synthesis, Structure and Properties,” Targets in Heterocyclic Systems. Ital. Chem. Soc. 3, 467–526 (1999).

    Google Scholar 

  53. J. P. Agrawal, “Recent Trends in High Energy Materials,” Prog. Energy Combust. Sci. 24, 1–30 (1998).

    Article  Google Scholar 

  54. H. Gao and J. M. Shreeve, “Azole-Based Energetic Salts,” ACS Public., Chem. Rev. (2011); dx.doi.org/10.1021/cr200039c.

    Google Scholar 

  55. S. Washiro, M. Yoshizawa, H. Nakajima, and H. Ohno, “Highly ion Conductive Flexible Films Composed of Network Polymers Based on Polymerizable Ionic Liquids,” Polymer 45, 1577 (2004).

    Article  Google Scholar 

  56. M. Yoshizawa and H. Ohno, “Synthesis of Molten Salt- Type Polymer Brush and Effect of Brush Structure on the Ionic Conductivity,” Electrochim. Acta 46, 1723 (2001).

    Article  Google Scholar 

  57. J. B. Tang, H. D. Tang, W. L. Sun, H. Plancher, and M. Radosz, “Poly(ionic liquid)s: A New Material with Enhanced and Fast CO2 Absorption,” Chem. Commun. 26, 3325 (2005).

    Google Scholar 

  58. H. Xue, H. Gao, and J. M. Shreeve, “Energetic Polymer Salts from 1-vinyl-1,2,4-triazole Derivatives,” J. Polym. Sci. Part A: Polym. Chem. 46, 2414 (2008).

    Article  ADS  Google Scholar 

  59. A. M. Kawamoto and J. A. S. Holand, “Synthesis and Characterization of Glycidyl Azide-r-(3,3- bis(azidomethyl)oxetane) Copolymers,” Propell., Explos., Pyrotech. 33, 365 (2008).

    Article  Google Scholar 

  60. E. Ahad, “Azido Thermoplastic Elastomers,” US Patent No. 5223056. (1993).

    Google Scholar 

  61. J. K. Nair, R. S. Satpute, T. Mukundan, et al., “Synthesis and Characterization of Bis-Azido Methyl Oxetane (BAMO) its Precursors, Polymer and Copolymer with THF,” Def. Sci. J. 52 (2), 147 (2002).

    Article  Google Scholar 

  62. D. M. Badgujar, M. B. Talawar, S. N. Asthana, and P. P. Mahulikar, “Advances in Science and Technology of Modern Energetic Materials: An Overview,” J. Hazard. Mater. 151 (2-3), 289 (2008).

    Article  Google Scholar 

  63. V. Tam, B. E. Ahad, D. Rheaume, and R. Whitehead, “Evaluation of Branched Glycidyl Azide Polymer Purified by Solvent Extraction,” Ind. Eng. Chem. Res. 36 (6), 2219 (1997).

    Article  Google Scholar 

  64. A. A. Malik, G. E. Manser, R. P. Carson, and T. G. Archibald, “Solvent-Free Process for the Synthesis of Energetic Oxetane Monomers,” US Patent No. 5523424. (1996).

  65. M. B. Frankel and J. E. Flanagan, “Energetic Hydroxy- Terminated Azido Polymer,” US Patent No. 4268450 (1981).

    Google Scholar 

  66. A. Provatas, “Characterisation and Polymerisation Studies of Energetic Binders,” DSTO-TR-1171, DSTO, Edinburgh. (2001).

    Google Scholar 

  67. A. D. Kshirsagar, D. G. Hundiwale, and P. P. Mahulikar, “Efficient Method for the Synthesis of Glicidilazide Polymers using Microwave (MW),” in 46th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2015), p. 47.

    Google Scholar 

  68. G. E. Manser, “Thermoplastic Elastomers Having Alternate Crystalline Structure for Use As High Energy Binders,” US Patent No. 5210153 (1993).

  69. K. M. Lynch and W. P. Dallet, “Improved Preparations of 3-chloro-2-(chloromethyl)-1-propene and 1,1- dibromo-2,2-bis(chloromethyl)cyclopropane: Intermediates in the Synthesis of [1.1.1]propellane,” J. Org. Chem. 60, 4666.

  70. T. Keicher, W. Janitschek, U. Schaller, and H. Krause, “Synthesis and Properties of Random Co-polymer Poly-(GA/BAMO) as Energetic Binder,” in 45th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2014), p. 101.

    Google Scholar 

  71. R. R. Sanghavi, S. N. Asthana, and H. Singh, “Thermoplastic Elastomers (TPEs) as Binders for Futuristic Propellant and Explosive. A Review,” J. Polym. Mater. 17, 221 (2000).

    Google Scholar 

  72. R. R. Sanghavi, S. N. Asthana, J. S. Karrir, and H. Singh, “Combustion and Thermal Behavior of Balistically Modified EVA and Estane Based RDX-AP Propellants,” J. Energ. Mater. 20 (2), 97–134 (2002).

    Article  Google Scholar 

  73. A. K. Sikder and N. Sikder, “1,3,3-Trinitroazetidine (TNAZ), a Melt-Cast Explosive: Synthesis, Characterization and Thermal Behaviour,” J. Hazard Mater. 113, 34 (2006).

    Google Scholar 

  74. T. Urbanski, Chemistry and Technology of Explosives (Pergamon Press, New York, 1984), Vol. 4, p. 152.

    Google Scholar 

  75. K. S. Burrows, “New Explosives for Insensitive Munitions: A Comparative Evaluation,” in Paper Presented at the Insensitive Munitions and Energetic Materials Symposium (Bordeaux, France, October 8–11, 2001), Vol. 1, pp. 230–238.

    Google Scholar 

  76. G. Bocksteiner and H. Billon, “Insensitive Polymer Bonded Main Charge Explosive PBXW-115,” in Binder and Formulation Studies, Technical Report No. MRLTR- 91-54 (DSTO Materials Research Laboratory, Sydney, 1992).

    Google Scholar 

  77. A. Bailey and S. G. Murray, “Explosives, Propellants and Pyrotechnics,” in Land Warfare: Brassey’s New Battleeld Weapons Systems and Technology Series, Vol. 2, Ed. by F. Hartley and R. G. Lee (Brassey’s, 1989).

    Google Scholar 

  78. R. Wild and W. Maasberg, “Energetic Materials for Insensitive Munitions,” in New Trends in Research of Energetic Materials, Paper Presented at the 5th Seminar, Pardubice University, Czech Republic, April 24–25, 2002, pp. 383–398.

    Google Scholar 

  79. J. Akhavan, The Chemistry of Explosives (RSC Paperbacks, Cambridge, 1998).

    Google Scholar 

  80. G. Govindan and S. K. Athithan, “Studies on Curing of Polyurethane Propellant Binder System,” Propell., Explos., Pyrotech. 19 (5), 240 (1994).

    Article  Google Scholar 

  81. S. Fordham, High Explosives and Propellants (Pergamon Press, Oxford, 1966), Vol. 1.

  82. B. Finck and H. Graindorge, “New Molecules for High Energy Materials,” in 27th Int. Annu. Conf. ICT (Karlsruhe, Germany, 1996), p. 23.

    Google Scholar 

  83. M. Y. Tsang, C. Vinas, F. Teixidor, et al., “Synthesis, Structure, and Catalytic Applications for Ortho- and Meta-Carboranyl Based NBN Pincer-Pd Complexes,” Inorg. Chem. 53 (17), 9284–9295 (2014).

    Article  Google Scholar 

  84. S. L. Clark, H. Goldstein, and L. T. Heying, “Organoboron Copolymers and Method for their Preparation,” US Patent No. 3121117. (1964).

  85. H. L. Goldstein and T. L. Heying, “Organoboron Polymers and Process of Making Same,” US Patent No. 3109031. (1963).

  86. W. E. Hill and R. L Beason, “Composite Propellant Including Gem-nf2-Alkyl Carborane,” US Patent No. 3764417. (1973).

  87. N. I. Bekasova and N. G. Komarova, “Effect of Carborane Groups and the Structure of Their Surrounding Organic Fragments on the Reactivity of Monomers and Properties of Polymers,” Usp. Khim. 61 (3), 647–667 (1992).

    Article  Google Scholar 

  88. L. I. Zakharkin, V. N. Kalinin, and L. S. Podvisotskaya, “Comparative Reactivity of Ortho-, Meta-, and Para- Carboranes,” Izv. Akad. Nauk SSSR, Ser. Khim., No. 6, 1297–1302 (1970).

    Google Scholar 

  89. P. R. Dave, F. Forohar, T. Axenrod, et al., “Preparation of Cyclotriphosphazene Polynitramines,” in Joint Int. Symp. on Energetic Materials, American Defence Preparedness Association (New Orleans, 1992).

    Google Scholar 

  90. A. Provatas, “Energetic Plasticizer Migration Studies,” J. Energ. Mater. 21, 237–245 (2003).

    Article  Google Scholar 

  91. R. D. Chapman, M. F. Welker, and C. B. J. Kreutzberger, “Polyalkoxyphosphazenes by Room-Temperature Polymerization of an Electronegative Phosphoranimine Monomer,” Inorg. Organomet. Polym. 6 (3), 267 (1996).

    Article  Google Scholar 

  92. H. R. Allcock, A. E. Maher, and C. M. Ambler, “Side Group Exchange in Poly(organophosphazenes) with Fluoroalkoxy Substituents,” Macromolecules 36, 5566 (2003).

    Article  ADS  Google Scholar 

  93. H. R. Allcock and Y. B. Kim, “Synthesis, Characterization, and Modification of Poly(organophosphazenes) with Both 2,2,2-trifluoroethoxy and Phenoxy Side Groups,” Macromolecules 27, 3933 (1994).

    Article  ADS  Google Scholar 

  94. D. G. Gabler and J. F. Haw, “Hydrolysis of Poly(dichlorophosphazene),” Macromolecules 24 (14), 421 (1991).

    Article  Google Scholar 

  95. H. G. Ang and S. Pisharath, Energetic Polymers: Binders and Plasticizers for Enhancing Performance (Wiley-VCH, Weinheim, Germany, 2012).

    Google Scholar 

  96. A. Provatas “Energetic Polymers and Plasticizers for Explosive Formulations: A Review of Recent Advances,” Report No. DSTO-TR-0966 (2000).

  97. A. S. Cumming, “Focus Area Report for Propellants and Explosives,” in TTCP, W-4, Energetic Materials and Propulsion Technology, 22nd Meeting, 1997, p. 112.

    Google Scholar 

  98. R. S. Miller, “Research on New Energetic Materials,” Decomposition, Combustion, and Detonation Chemistry of Energetic Materials, Ed. by Th. Brill et al.; Materials Res. Soc. Symp. Proc. 418, 3 (1996).

    Google Scholar 

  99. R. Damavarapu, M. Mezger, K. Baum, and J. M. Lovatob, “New Approach to BDNPA/F,” in Insensitive Munitions Technology Symp., VA, June 6–9, 1994.

    Google Scholar 

  100. H. G. Adolph, “Bis(dinitropropyl)formal/dinitrobutyl Dinitropropyl Formal Plasticizer,” US Patent No. 4997499 (1991).

  101. B. R. Wardle, S. Hamilton, M. Geslin, et al., “An Environmentally Favorable Continuous Process for the Synthesis of BDNPA/F,” in 30th Int. Annu. Conf. ICT (Karlsruhe, Germany, 1999), p. 39–1.

    Google Scholar 

  102. E. Ahad, “Direct Conversion of Epichlorohydrin to Glycidyl Azide Polymer,” US Patent No. 4891438 (1990).

    Google Scholar 

  103. G. Ampleman, “Synthesis of a Diazido Terminated Energetic Plasticizer,” US Patent No. 5124463 (1992).

  104. J. P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics (Wiley-VCH, Weinheim, Germany, 2015).

  105. R. L. Simmons, “Thermo Chemistry of NENA Plasticizers,” in 25th Int. Annu. Conf. ICT (Karlsruhe, Germany, 1994), p. 10.

    Google Scholar 

  106. R. A. Johnson and J. J. Mullay, “Stability and Performance Characteristics of NENA Materials and Formulations,” in Joint Int. Symp. on Energetic Materials Technology, New Orleans, LA, October 5–7, 1992.

    Google Scholar 

  107. M. Cliff, “PolyGLYN Binder Studies and PBX Formulation: Technical Achievements from a LTA to DERA Fort Halstead,” Technical Report No. DSTO-TR-0884 (Salisbury, SA, 1999).

    Google Scholar 

  108. G. V. Sakovich, Principles for Designing and Using Composite Materials with Dispersed Fillers,” Izv. Akad. Nauk SSSR, Ser. Khim., No. 10, 2354–2375 (1990).

  109. G. V. Sakovich, “Design Principles of Advanced Solid Propellants, ” J. Propul. Power 11 (4), 830–837 (1995).

  110. V. F. Komarov and V. A. Shandakov, “Solid Fuels, Their Properties and Applications,” Fiz. Goreniya Vzryva, 35 (2), 30–34 (1999) [Combust., Expl., Shock Waves 35 (2), 139–143 (1999)].

    Google Scholar 

  111. Yu. M. Mikhaillov and E. R. Badamshina, Energy-Saturated Polymers: Synthesis, Structure, and Properties (Raschet, Moscow, 2008) [in Russian].

    Google Scholar 

  112. F. Gong, P. Wu, Z. Yang, and X. Liu, “A Novel and Green Method for Producing Polymer Bonded Explosives (PBX) by Using Thermo-Responsive PNIPAM As Binder,” in 47th Int. Annu. Conf. ICT (Karlsruhe, Germany, 2016), p. 58.

    Google Scholar 

  113. A. Hahma, J. Licha, F. Kaiser, et al., “Plastic Bonded Shock Intensive Explosives without Plasicizers,” in 45th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2014), p. 9.

    Google Scholar 

  114. J. S. Kim, S. H. Kim, Y. Kwon, and H. S. Kim, “Synthesis of Reactive Energetic Plasticizers with Clickable Functionality to Control Processing Properties of Castable PBX’s,” in 44th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2013), p. 44.

    Google Scholar 

  115. X. J. Xu, J. J. Xiao, W. Zhu, et al., “Molecular Dynamics Simulation of Pure e-CL-20 and e-CL-20 Based PBXs,” J. Phys. Chem. B 110, 7203–7207 (2006).

    Article  Google Scholar 

  116. L. Zhang, S. V. Zybin, A. C. T. van Duin, et al., “Thermal Decomposition of Energetic Materials by REAXFF Reactive Molecular Dynamics,” in 14th Amer. Phys. Soc. Topical Conf. on Shock Compression of Condensed Matter, 2005, pp. 589–592.

    Google Scholar 

  117. M. R. Baer, “Modeling Heterogeneous Energetic Materials at the Mesoscale,” Thermochim. Acta 284, 351–367 (2002).

    Article  Google Scholar 

  118. A. Maiti, R. H. Gee, D. M. Hoffman, and L. E. Fried, “Irreversible Volume Growth in Polymer-Bounded Powder System Effects of Crystalline Anisotropy, Particle Size Distribution and Binder Strength,” J. Appl. Phys. 103, 053504 (2008).

    Article  ADS  Google Scholar 

  119. M. R. Baer, C. A. Hall, R. I. Gustavsen, et al., “Isentropic Loading Experiments of a PBX and Constituents,” J. Appl. Phys. 101, 034906 (2007).

    Article  ADS  Google Scholar 

  120. H. Tan, C. Liu, Y. Huang, and P. H. Guebelle, “The Cohesive Law for the Particle/Matrix Interfaces in High Explosives,” J. Mech. Phys. Solids 53 (8), 1892–1917 (2005).

    Article  ADS  Google Scholar 

  121. R. Menikoff and D. S. Thomas, “Constituent Properties of HMX Needed for Mesoscale Simulations,” Combust. Theor. Model. 6 (1), 103–125 (2002).

    Article  MATH  ADS  Google Scholar 

  122. K. Matous, H. M. Inglis, X. Gu, et al., “Multiscale Modeling of Solid Propellants: From Particle Packing to Failure,” Compos. Sci. Technol. 67, 1694–1708 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Badgujar.

Additional information

Original Russian Text © D.M. Badgujar, M.B. Talawar, V.E. Zarko, P.P. Mahulikar.

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 4, pp. 3–22, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badgujar, D.M., Talawar, M.B., Zarko, V.E. et al. New directions in the area of modern energetic polymers: An overview. Combust Explos Shock Waves 53, 371–387 (2017). https://doi.org/10.1134/S0010508217040013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217040013

Keywords

Navigation