Skip to main content
Log in

Recent Advances in Safe Synthesis of Energetic Materials: An Overview

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The development of novel energetic materials with highest possible performance is of current interest. Synthesis of such materials is performed at various stages of pilot plant production all over the world. However, their synthesis involves hazardous production processes. This paper discusses relatively safe and eco-friendly approaches and techniques such as microwave technology and the use of ionic liquids for the synthesis of high-performance energetic materials that can be used as explosives and propellants. In addition, the use of dinitrogen pentoxide as an efficient nitrating agent for the synthesis of energetic materials is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics (Wiley-VCH, Weinheim, 2010).

    Book  Google Scholar 

  2. D. M. Badgujar and P. P. Mahulikar, “Advances in Science and Technology of Modern Energetic Materials: An Overview,” J. Hazard. Mater. 151, 289–305 (2008).

    Article  Google Scholar 

  3. G. A. Olah, R. Malhotra, and S. C. Narang, Nitration: Methods and Mechanism, Organic Nitro Chemistry Series, Ed. by H. Fueur (VCH, New York, 1989).

  4. Zhang Chi, Li Jie, Luo Yun-Jun, and Zhai Bin, “Microwave-Assisted Azidation Reaction for Rapid Synthesis of Poly(3,3’-bisazidomethyl Oxetane),” J. Energ. Mater. 34 (2), 197–204 (2016).

    Article  Google Scholar 

  5. A. Kshirsagar, V. Gite, D. Hundiwale, and P. Mahulikar, “Microwave Assisted Synthesis and Characterization of Glycidyl Azide Polymers Containing Different Initiating Diol Units,” Centr. Eur. J. Energ. Mater. 12 4), 757–767 (2015).

    Google Scholar 

  6. R. Gedye, F. Smith, K. Westaway, H. L. AliBaldisera, L. Laberge and, and J. Rousell, “The use of Microwave Ovens for Rapid Organic Synthesis,” Tetrahedron Lett. 27, 279–282 (1986).

    Article  Google Scholar 

  7. N. N. Romanova, A. G. Gravis, and N. V. Zyk, “ Microwave irradiation in organic synthesis,” Usp. Khim. 74 (11), 1059–1105 (2005).

    Article  Google Scholar 

  8. K. C. Oliver, D. Doris, and M. S. Shaun, Practical Microwave Synthesis for Organic Chemists: Strategies, Instruments, and Protocols (Wiley-VCH Verlag GmbH, Weinheim, 2009).

    Google Scholar 

  9. B. L. Hayes, Microwave Synthesis: Chemistry at the Speed of Light (CEM, Matthews, 2002).

    Google Scholar 

  10. D. I. De Pomerai, B. Smith, A. Dawe, K. North, T. Smith, D. B. Archer, I. R. Duce, D. Jones, and E. P. M. Candidio, “Microwave Radiation Can Alter Protein Conformation without Bulk Heating,” FEBS Lett. 543, 93–97 (2003).

    Article  Google Scholar 

  11. B. J. Maynard, “Sonochemistry,” Chemistry 17–22 (Summer 2000); see also: Handbook of Ultrasonics and Sonochemistry, Ed. by A. Muthupandian (Nature, Springer, 2016).

    Google Scholar 

  12. D. M. P. Mingos and D. R. Baghurst, “Tilden Lecture. Applications of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry,” Chem. Soc. Rev. 20, 1–47 (1991).

    Article  Google Scholar 

  13. C. S. Landry, J. Lockward, and A. R. Barron, “Synthesis of Chalcopyrite Semiconductors and Their Solid Solutions by Microwave Irradiation,” Chem. Mater. 7, 699–706 (1995).

    Article  Google Scholar 

  14. S. Komarneni, R. Pidugu, Q. H. Li, and R. Roy, “Microwave-Hydrothermal Processing of Metal Powders,” J. Mater. Res. 10, 1687–1692 (1995).

    Article  ADS  Google Scholar 

  15. B. Vaidhyanathar, M. Ganguli, and K. J. Rao, “Fast Solid State Synthesis of Metal Vanadates and Chalcogenides Using Microwave Irradiation,” Mater. Res. Bull. 30, 1173–1177 (1995).

    Article  Google Scholar 

  16. D. E. Clark, I. Ahmad, and R. C. Dalton, “Microwave Ignition and Combustion Synthesis of Composites,” Mater. Sci. Eng. A 144, 91–97 (1991).

    Article  Google Scholar 

  17. J. D. Katz, “Microwave Sintering of Ceramics,” Annu. Rev. Mater. Sci. 22, 153–170 (1992).

    Article  ADS  Google Scholar 

  18. J. D. Houmes and H. C. Zurloye, “Plasma Nitridation of Metal Oxides,” Chem. Mater. 8, 2551–2553 (1996).

    Article  Google Scholar 

  19. M. A. Hiskey, D. E. Chavez, and D. L. Naud, Insensitive High-Nitrogen Compounds, LA-UR-01-1493 Report (Los Alamos National Laboratory, 2001).

    Google Scholar 

  20. R. Ballini, G. Bosica, D. Fiorini, A. Palmieri, and M. Petrini, “Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes: Recent Results,” Chem. Rev. 105, 933–972 (2005).

    Article  Google Scholar 

  21. R. Ballini, G. Bosica, D. Fiorini, and A. Palmieri, “Acyclic a-nitro Ketones: A Versatile Class of a-functionalized Ketones in Organic Synthesis,” Tetrahedron. 61, 8971–8993 (2005).

    Article  Google Scholar 

  22. V. P. Sinditskii, V. Y. Egorshev, G. F. Rudakov, and L. D. Sang, “Thermal Behavior and Combustion Mechanism of High-Nitrogen Energetic Materials DHT and BTATz,” Thermochim. Acta 535, 48–57 (2012); DOI: https://doi.org/10.1016/j.tca.2012.02.014.

    Article  Google Scholar 

  23. A. Saikia, R. Sivabalan, B. G. Polke, B. G. Gore, A. Singh, A. S. Rao, and A. K. Sikder, “Synthesis and Characterization of 3,6-bis(1H-1,2,3,4-tetrazol-5-ylamino)-1,2,4,5-tetrazine (BTATz): Novel High-Nitrogen Content Insensitive High Energy Material,” J. Hazard. Mater. 170, 306–313 (2009).

    Article  Google Scholar 

  24. J. P. Agarwal “Recent Trends in High-Energy Materials,” Prog. Energy Combust. Sci. 24, 1–30 (1998).

    Article  Google Scholar 

  25. M. D. Coburn, “Picrylamino Substituted Heterocycles II,” J. Heterocycl. Chem. 5, 83–87 (1968).

    Article  Google Scholar 

  26. G. A. Pearse and R. T. Pflaum, “Interaction of Metal Ions with Amidoximes,” J. Amer. Chem. Soc. 81, 6505–6508 (1959).

    Article  Google Scholar 

  27. H. E. Ungade, I. W. Kissinger, A. Narath, and D. C. Barham, “The Structure of Amidoximes. II. Ox-amidoxime,” J. Org. Chem. 28, 134–136 (1963).

    Article  Google Scholar 

  28. A. K. Zelenin and M. L. Trudell, “A Two-Step Synthesis of Diaminofurazan and Synthesis of N-monoarylmethyl and N,N’-diarylmethyl Derivatives,” J. Heterocycl. Chem. 34, 1057–1060 (1997).

    Article  Google Scholar 

  29. A. Gunasekaran, T. Jaychandran, J. H. Boyer, and M. L. Trudell, “A Convenient Synthesis of Diaminogly-oxime and Diaminofurazan: Useful Precursors for the Synthesis of High Density Energetic Materials,” Heterocycl. Chem. 32, 1405 (1995).

    Article  Google Scholar 

  30. R. S. Kusurkar, S. K. Goswami, M. B. Talawar, G. M. Gore, and S. N. Asthana, “Microwave Mediated Fast Synthesis of Diaminoglyoxime and 3,4-diaminofurazan: Key Synthons for the Synthesis of High Energy Density Materials,” J. Chem. Res. 4 (1), 245–247 (2005).

    Article  Google Scholar 

  31. M. B. Talawar, R. Sivabalan, N. Senthilkumar, G. Prabhu, and S. N. Ashtana, “Synthesis, Characterization and Thermal Studies on Furazan- and Tetrazine-Based High Energy Materials,” J. Hazard. Mater. A113, 11–25 (2004).

    Article  Google Scholar 

  32. P. F. Pagoria, S. Lee, A. R. G. Mitchell, and R. D. Schmidt, “A Review of Energetic Materilas Synthesis,” Termochim. Acta 384, 187 (2002).

    Article  Google Scholar 

  33. A. P. Marchand, D. Rajagopal, S. G. Bott, and T. G. Archibald, “Synthesis of 1,3,3-trinitroazetidine Via the Oxidative Nitrolysis of N-p-tosyl-3-azetidinone Oxime,” J. Org. Chem. 60, 1959–1964 (1995).

    Article  Google Scholar 

  34. A. Saikia, R. Sivabalan, G. M. Gore, and A. K. Sikder, “Microwave-Assisted Quick Synthesis of Some Potential High Explosives,” Propell., Explos., Pyrotech. 37 (5), 540–543 (2012).

    Article  Google Scholar 

  35. T. Urbanski, Chemistry and Technology of Explosives (Pergamon Press, Oxford, 1984), Vol. 4, Chapter 7.

  36. D. M. Badgujar, M. B. Talawar, S. N. Asthana, and P. P. Mahulikar, “Microwave Assisted Facile Synthesis of {1/l,3-bis/l,3,5-tris-[(2-nitroxyethylnitramino)-2,4,6-trinitrobenzene]} using Bismuth Nitrate Pentahy-drate as an Eco-Friendly Nitrating Agent,” J. Hazard. Mater. 152, 820–825 (2008).

    Article  Google Scholar 

  37. H.-J. Liu, Y.-Q. Fan, F. Feng, S.-M. Meng, Y. Guo, Z. Lu, and D.-L. Cao, “Synthesis of 2,4-dinitromidazole by Microwave Heating,” Chin. J. Energ. Mater. 18 (1), 1–3 (2010).

    ADS  Google Scholar 

  38. Y. Zhang, Y. Guo, Y. H. Joo, D. A. Parrish, and J. M. Shreeve, “3,4,5-Trinitropyrazole-Based Energetic Salts,” Chem. Eur. J. 16, 10778–10784 (2010).

    Article  Google Scholar 

  39. P. Yin, C. M. He, and J. Shreeve, “Fused Heterocycle-Based Energetic Salts: Alliance of Pyrazole and 1,2,3-triazole,” J. Mater. Chem. A 4, 1514–1519 (2016).

    Article  Google Scholar 

  40. J. W. A. M. Janssen, C. L. Habraken, and R. Louw, “On the Mechanism of the Thermal N-nitropyrazole Rearrangement. Evidence for a [1,5] Sigmatropic Nitro Migration,” J. Org. Chem. 41, 1758–1762 (1976).

    Article  Google Scholar 

  41. P. Ravi and S. P. Tewari, “Solvent Free Microwave Assisted Isomerization of N-nitropyrazoles,” Propell, Explos., Pyrotech. 38, 147 (2013); DOI: https://doi.org/10.1002/prep.201200135.

    Article  Google Scholar 

  42. R. A. Sheldon, “Atom Efficiency and Catalysis in Organic Synthesis,” Pure Appl. Chem. 72, 1233 (2000).

    Article  Google Scholar 

  43. R. A. Sheldon, “E Factors, Green Chemistry and Catalysis: An Odyssey,” Chem. Commun., No. 29, 3352–3365 (2008).

    Article  Google Scholar 

  44. Y. Sasson and G. Rothenberg, Handbook of Green Chemistry and Technology, Ed. by J. Clark and D. Mac-quarrie (Blaclwell, Oxford, 2002), pp. 206–257.

  45. N. V. Plechkova, K. R. Seddon, “Applications of Ionic Liquids in the Chemical Industry,” Chem. Soc. Rev. 37, 123–150 (2008).

    Article  Google Scholar 

  46. F. van Rantwijk and R. A. Sheldon, “Biocatalysis in Ionic Liquids,” Chem. Rev. 107, 2757–2785 (2007).

    Article  Google Scholar 

  47. M. K. Potdar, G. F. Kelso, L. Schwarz, C. Zhang, and M. T. W. Hearn, “Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids,” Molecules 20, 16788–16816 (2015).

    Article  Google Scholar 

  48. J. Ranke, S. Stolte, R. Stormann, J. Arning, and B. Jas-torff, “Design of Sustainable Chemical Products-the Example of Ionic Liquids,” Chem. Rev. 107, 2183–2206 (2007).

    Article  Google Scholar 

  49. T. M. Klapotke and G. Holl, “The Greening of Explosives and Propellants Using High Energy Nitrogen Chemistry,” Green Chem. 3, G75 (2001).

    Google Scholar 

  50. G. W. Darke, T. W. Hawkins, K. Tollison, L. Hall, A. Vij, and S. Sobaski, Ionic Liquids IIIA: Fundamental, Progress, Challenges and Opportunities, Ed. by R. D. Rogers and K. R. Seddon, ACS Symp Ser., Vol. 901 (Amer. Chem. Soc, Washington, 2005), pp. 259–302.

  51. T. W. Hawkins, K. Tollison, L. Hall, and A. Vij, “Experimental and Theoretical Study of 1,5-diamino-4-H-1,2,3,4-tetrazolium Perchlorate,” Propell., Explos., Pyrotech. 30, 156–163 (2005).

    Article  Google Scholar 

  52. Ionic Liquids in Synthesis, Ed. by P. Wasserscheid and T. Welton (Wiley-VCH, Weinheim, 2003).

  53. N. N. Makhova, A. B. Sheremetev, I. V. Ovchinnikov, I. L. Yudin, A. S. Ermakov, P. V. Bulatov, D. B. Vinogradov, D. B. Lempert, and G. B. Manelis, “New Aspects of Application of Trinitroethanol Derivatives for the Construction of Pyrotechnic Gas-Generating Ingredients,” in Proc. 35th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2004), pp. 140(1-12).

    Google Scholar 

  54. A. B. Sheremetev and I. L. Yudin, “Synthesis of 2-R-2,2-dinitroethanol Orthoesters in Ionic Liquids,” Mendeleev Commun. 15 (5), 204–205 (2005); DOI: https://doi.org/10.1070/MC2005v015n05ABEH002157.

    Article  Google Scholar 

  55. G. Cheng, X. Li, X. Qi, and C. Lu, “Synthesis of RDX Catalyzed by Br?nsted Acidic Ionic Liquids,” J. Energ. Mater. 28 (35) (2010).

    Google Scholar 

  56. G. F. Wright, Methods of Formation of the Nitramine Group, its Properties and Reactions. The Chemistry of the Nitro and Nitroso Groups, Ed. by H. F. Feuer (Interscience, New York, 1969), Part 1, Chapter 9.

  57. S. Radhakrishnan, M. B. Talawar, and S. Venugopalan, “Synthesis, Characterization and Thermolysis Studies on 3,7-dinitro-l,3,5,7-tetraazabicyclo[3,3,1]nonane (DPT): A Key Precursor in the Synthesis of Most Powerful Benchmark Energetic Materials (RDX/HMX) of Today,” J. Hazard. Mater. 152 (3), 1317–1324 (2008).

    Article  Google Scholar 

  58. Z. He, J. Luo, and C. Lu, “Synthesis of HMX Via Nitrolysis of DPT Catalyzed by Acidic Ionic Liquids,” Centr. Eur. J. Energ. Mater. 8 (2), 83–91 (2011).

    Google Scholar 

  59. Organic Energetic Compounds, Ed. by P. L. Marinkas (Nova Sci. Publ, New York, 1996), p. 108.

  60. N. N. Makhova, A. S. Ermakov, I. V. Ovchinnikov, et al., “Trinitroetyl Esters of Aryl and Hetaryl Carboxylic Acids as Potential Components for the Construction of Pyrotechnic Gas-Generating Formulations,” in Proc. of the 36th Int. Annu. Conf. of ICT and Int. Pyrotechn. Seminar (Karlsruhe, Germany, 2005), p. 185(1–10).

  61. V. D. Nikolaev and M. A. Ishchenko, “Acetals and Esters of Polynitrospirt,” Ross. Khim. Zh. XLI (2), 14–21 (1997).

    Google Scholar 

  62. A. B. Sheremetev, I. L. Yudin, and K. Yu. Suponit-sky, “Ionic Liquid-Assisted Synthesis of Trinitroethyl Esters,” Mendeleev Commun. 16 (5), 264–266 (2006).

    Article  Google Scholar 

  63. G. Zhao, T. Jiang, H. Gao, J. Huang, and D. Sun, “Man-nich Reaction Using Aacidic Ionic Liquids as Catalysts and Solvents,” Green Chem. 6, 75–77 (2004).

    Article  Google Scholar 

  64. T. Jiang, H. Gao, B. Han, G. Zhao, Ya. Chang, W. Wu, L. Gao, and G. Yang, “Ionic Liquid Catalyzed Henry Reactions,” Tetrahedron Lett. 45, 2699–2701 (2004).

    Article  Google Scholar 

  65. D. Kundu, R. K. Debnath, A. Majee, and A. Ha-jra, “Zwitterionic-Type Molten Salt-Catalyzed Syn-Selective Aza-Henry Reaction: Solvent-Free One-Pot Synthesis of /3-nitroamines,” Tetrahedron Lett. 50, 6998–7000 (2009).

    Article  Google Scholar 

  66. M. A. Epishina, I. V. Ovchinnikov, A. S. Kulikov, N. N. Makhova, and V. A. Tartakovsky, “Henry and Mannich Reactions of Polynitroalkanes in Ionic Liquid,” Mendeleev Commun. 21, 21 (2011).

    Google Scholar 

  67. V. V. Avdonin, G. A. Volkov, P. V. Galkin, et al, “Preparation and Properties of N-fluoro- and N-nitro-bis Derivatives (2,2,2-trinitroethyl) Urea,” Izv. Akad. Nauk, Ser. Khim., No. 8, 1857–1863 (1992) [Bull. Russ. Acad. Sci., Div. Chem. Sci. 41 (8), 1447–1452 (1992)].

    Google Scholar 

  68. F. R. Schenck and G. A. Watterholm, “Process for Producing Ammonia Derivatives of Polynitroalcohols,” US Patent No. 2.731.460 (1956); Chem. Abstr. 50, 7125g (1956).

    Google Scholar 

  69. H. Feuer and T. J. Kucera, “Preparation of 2,2,2-Trinitroethanol,” J. Org. Chem. 25, 2069–2070 (1960).

    Article  Google Scholar 

  70. C. C. Addison and N. Logan, Developments in Inorganic Nitrogen Chemistry (Elseiver, Amsterdam, 1973), Chapter 2.

    Google Scholar 

  71. R. W. Millar, M. E. Coclough, P. Golding, P. J. Honey, C. Paul, A. J. Sanderson, and M. J. Stewart, “New Synthesis Routes for Energetic Materials Using Dinitrogen Pentoxide,” Phil. Trans. Roy. Soc, London A 339, 305 (1992).

    Article  ADS  Google Scholar 

  72. R. W. Millar, M. E. Coclough, P. Golding, et al., “Novel Synthesis of Energetic Materials using Dinitrogen Pentoxide Nitration,” ACS Symp. Ser. 623, 104–121 (1996).

    Article  Google Scholar 

  73. Q. Wang, F. Shi, X. Zhang, L. Wang, and Z. Mi, “Green Synthesis of Glycidyl Nitrate,” Chin. J. Explos. Propell. 32 (2), 14–16 (2009).

    Google Scholar 

  74. F. Shi, Q. Wang, X. Zhang, L. Wang, and Z. Mi, “The Green Synthesis of 1,2-propylene Glycol Dini-trate,” Chin. J. Explos. Propell. 30 (2), 75–77 (2007).

    Google Scholar 

  75. G. S. Lee, A. R. Mitchell, P. F. Pagoria, and R. D. Schmidt, “A Review of Energetic Materials Synthesis,” Thermochim. Acta 384, 187–204 (2002).

    Article  Google Scholar 

  76. H. Q. Qian, Z.-W. Ye, and C.-X. L.ii, “Synthesis of CL-20 by Clean Nitration,” Chin. J. Explos. Propell. 29 (3), 52 (2006).

    Google Scholar 

  77. M. Malesa and W. Skupinski, “Separation of Ammonium Dinitramide from Reaction Mixture,” Propell., Explos., Pyrotech. 24, 83–89 (1999).

    Article  Google Scholar 

  78. S. Borman, “Advanced Energetic Materials Emerge for Military and Space Applications,” J. Chem. Eng. News 72, 18–22 (1994).

    Article  Google Scholar 

  79. N. G. Hossein, M. Ramin, F. Mohammad, and K. Parviz, “Synthesis of Ammonium Dinitramide by Nitration of Potassium and Ammonium Sulfamate. The Effect of Sulfamate Conterion on ADN Purity,” Iran. J. Chem. Chem. Eng. 27 (1), 85–89 (2008).

    Google Scholar 

  80. B.-Z. Wang, Q. Liu, Z.-Z. Zhang, P. Lian, and H.-H. Zhu, “Synthesis of Ammonium Dinitramide from Ethyl Carbamate,” Chin. J. Explos., Propell. 28 (3), 49–51 (2005).

    Google Scholar 

  81. Xiao-Feng Cao, Bin-Dong Li, and Min Wang, “An Efficient Method to Synthesize TNAD by the Nitration of 1,4,5,8-tetraazabicyclo-[4,4,0]-decane with N2O5 and Acidic Ionic Liquids,” Chinese Chem. Lett. 25 (3), 423–426 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. E. Zarko or P. P. Mahulikar.

Additional information

Original Russian Text © D.M. Badgujar, M.B. Talawar, V.E. Zarko, P.P. Mahulikar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badgujar, D.M., Talawar, M.B., Zarko, V.E. et al. Recent Advances in Safe Synthesis of Energetic Materials: An Overview. Combust Explos Shock Waves 55, 245–257 (2019). https://doi.org/10.1134/S0010508219030018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508219030018

Keywords

Navigation