Skip to main content
Log in

On the mechanism of thermal decomposition of ammonium dinitramide (review)

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Despite significant progress in studying thermal decomposition of ammonium dinitramide (ADN), the kinetics of the process at the level of elementary stages has not been adequately understood. The aim of this review is to summarize various published data, which are of interest for studying and simulating the processes of thermal decomposition and combustion of ADN. Considerable attention is paid to physical and chemical properties of ADN, dinitramide and its anion N(NO2) -2 , which play a key role in ADN decomposition. Various paths of decomposition of ADN, dinitramide, and N(NO2) -2 are discussed. Results illustrating alternative points of view on the decomposition process are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. A. Luk’yanov, V. P. Gorelik, and V. A. Tartakovsky, “Dinitramide and Its Salts. Communication 1. Obtaining Dinitramide Salts in the Reaction of Decyanethylization of N, N-dinitro-ß-amynopropyonitrile,” Izv. Akad. Nauk, Ser. Khim., No. 1, 94–97 (1994).

    Google Scholar 

  2. O. A. Luk’yanov, Yu. V. Konnova, T. A. Klimova, and V. A. Tartakovsky, “Dinitramide and Its Salts. Communication 2. Dinitramide in Direct and Reverse Michael-Type Reactions,” Izv. Akad. Nauk, Ser. Khim., No. 7, 1264–1266 (1994).

    Google Scholar 

  3. O. A. Luk’yanov, O. V. Anikin, V. P. Gorelik, and V. A. Tartakovsky, “Dinitramide and Its Salts. Communication 3. Dinitramide Salts with Metals,” Izv. Akad. Nauk, Ser. Khim., No. 9, 1546–1549 (1994).

    Google Scholar 

  4. V. A. Shlyapochnikov, N. O. Cherskaya, O. A. Luk’yanov, V. P. Gorelik, and V. A. Tartakovsky, “Dinitramide and Its Salts. Communication 4. Molecular Structure of Dinitramide,” Izv. Akad. Nauk, Ser. Khim., No. 9, 1610–1613 (1994).

    Google Scholar 

  5. O. A. Luk’yanov, N. I. Shlykova, and V. A. Tartakovsky, “Dinitramide and Its Salts. Communication 5. Alkylation of Dinitramide and Its Salts,” Izv. Akad. Nauk, Ser. Khim., No. 10, 1775–1778 (1994).

    Google Scholar 

  6. O. A. Luk’yanov, A. R. Agevnin, A. A. Leichenko, N. M. Seregina, and V. A. Tartakovsky, “Dinitramide and Its Salts. Communication 6. Dinitramide Salts with Ammonium Bases,” Izv. Akad. Nauk, Ser. Khim., No. 1, 113–117 (1995).

    Google Scholar 

  7. S. Venkatachalam, G. Santhosh, and K. N. Ninan, “An Overview on the Synthetic Routes and Properties of Ammonium Dinitramide (ADN) and Other Dinitramide Salts,” Propell., Explos., Pyrotech. 29 (3), 178–187 (2004).

    Article  Google Scholar 

  8. O. A. Luk’yanov and V. A. Tartakovsky, “Synthesis and Characterization of Dinitramidic Acid and Its Salts,” in Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, Ed. by V. Yang (2000), Ch. 1.8, pp. 207–220.

    Google Scholar 

  9. K. O. Christe, W. W. Wilson, M. A. Petrie, et al., “The Dinitramide Anion, N(NO2)-2,” Inorg. Chem. 35, 5068–5071 (1996).

    Article  Google Scholar 

  10. V. V. Gidaspov, I. V. Tselinskii, V. V. Mel’nikov, et al., “Crystalline Molecular Structure of Dinitramide Salts and Its Acid–Base Properties,” Zh. Obsch. Khim. 65 (6), 995–1002 (1995).

    Google Scholar 

  11. H. F. R. Schoyer, A. J. Schnork, P. A. Korting, et al., “High-Performance Propellants Based on Hydrazinium Nitroformate,” J. Propuls. Power 11 (4), 856–869 (1995).

    Article  Google Scholar 

  12. H. Bathelt and F. Volk, The ICT—Thermochemical Data Base (Fraunhofer Institut fur Chemische Technologie, 1997).

  13. H. Ostmark, U. Bemm, A. Langlet, R. Sanden, and N. Wingborg, “The Properties of Ammonium Dinitramide (ADN): Part 1, Basic Properties and Spectroscopic Data,” J. Energ. Mater. 18, 123–138 (2000).

    Article  Google Scholar 

  14. T. S. Kon’kova, Yu. N. Matyushin, E. A. Miroshnichenko, and A. B. Vorob’ev, “Thermochemical Properties of Dinitramidic Acid Salts,” Izv. Akad. Nauk, Ser. Khim., No. 10, 1958–1965 (2009).

    Google Scholar 

  15. S. Lobbecke, T. Keicher, H. Krause, and A. Pfeil, “The New Energetic Material Ammonium Dinitramide and Its Thermal Decomposition,” Solid State Ionics 101-103, 945–951 (1997).

    Article  Google Scholar 

  16. J. C. Bottaro, P. E. Penwell, and R. J. Schmitt, “1,1,3,3-Tetraoxo-1,2,3-Triazapropene Anion, a New Oxy Anion of Nitrogen: The Dinitramide Anion and Its Salts,” J. Amer. Chem. Soc. 119, 9405–9410 (1997).

    Article  Google Scholar 

  17. D. E. C. Jones, Q. S. M. Kwok, M. Vachon, C. Badeen, and W. Ridley, “Characterization of ADN and ADNBased Propellants,” Propell., Explos., Pyrotech. 30 (2), 140–147 (2005).

    Article  Google Scholar 

  18. A. S. Tompa, “Thermal Analysis of Ammonium Dinitramide (ADN),” Thermochim. Acta 357–358, 177–193 (2000).

  19. Z. Pak, “Some Ways to Higher Environmental Safety of Solid Rocket Propellant Application,” in 29th Joint Propulsion Conference and Exhibit, Monterey, June 28–30, 1993, CAAIAA Paper No. 93-1755 (1993).

  20. N. Wingborg, “Ammonium Dinitramide–Water: Interaction and Properties,” J. Chem. Eng. Data 51, 1582–1586 (2006).

    Article  Google Scholar 

  21. R. Yang, P. Thakre, and V. Yang, “Thermal Decomposition and Combustion of Ammonium Dinitramide (Review),” Fiz. Goreniya Vzryva 41 (6), 54–59 (2005) [Combust., Expl., Shock Waves 41 (6), 657–679 (2005)].

    Google Scholar 

  22. T. P. Russel, G. J. Piermarini, S. Block, and P. J. Miller, “Pressure, Temperature Reaction Phase Diagram for Ammonium Dinitramide,” J. Phys. Chem. 100 (8), 3248–3251 (1996).

    Article  Google Scholar 

  23. G. B. Manelis, “Thermal Decomposition of Dinitramide Salt,” in Pyrotechnics: Basic Principles, Technology, Application, 26th Int. Annu. Conf. of ICT (Karlsruhe, 1995), pp. 15.1–15.17.

    Google Scholar 

  24. A. N. Pavlov, V. N. Grebennikov, L. D. Nazina, et al., “Thermal Decomposition of Ammonium Dinitramide and Mechanism of Anomalous Decomposition of Dinitramide Salts,” Izv. Akad. Nauk, Ser. Khim., No. 1, 50–54 (1999).

    Google Scholar 

  25. A. I. Kazakov, Yu. I. Rubtsov, G. B. Manelis, and L. P. Andrienko, “Kinetics of Dinitramide Decomposition. Communication 1. Decomposition of Different Forms of Dinitramide,” Izv. Akad. Nauk, Ser. Khim., No. 12, 2129–2133 (1997).

    Google Scholar 

  26. H. H. Michels and J. A. Montgomery, “On the Structure and Thermochemistry of Hydrogen Dinitramide,” J. Phys. Chem. 97 (25), 6602–6606 (1993).

    Article  Google Scholar 

  27. P. Politzer and J. M. Seminario, “Computational Study of the Structure of Dinitraminic Acid, HN(NO2)2, and the Energetics of Some Possible Decomposition Steps,” Chem. Phys. Lett. 216 (3–6), 348–352 (1993).

    Article  ADS  Google Scholar 

  28. A. M. Mebel, M. C. Lin, K. Morokuma, and C. F. Melius, “Theoretical Study of the Gas-Phase Structure, Thermochemistry and Decomposition Mechanisms of NH4NO2 and NH4N(NO2)2,” J. Phys. Chem. 99 (18), 6842–6848 (1995).

    Article  Google Scholar 

  29. P. Politzer, J. M. Seminario, and M. C. Concha, “Energetics of Ammonium Dinitramide Decomposition Steps,” J. Mol. Struct. (Theochem) 427, 123–129 (1998).

    Article  Google Scholar 

  30. S. Alavi and D. L. Thompson, “Decomposition Pathways of Dinitramic Acid and the Dinitramide Ion,” J. Chem. Phys. 119 (1), 232–240 (2003).

    Article  ADS  Google Scholar 

  31. M. A. Bohn and M. E. Grillo, “Quantum Mechanical Calculations Used to Reveal Decomposition Ways of Ammonium Dinitramide (ADN),” in 37th Int. Annu. Conf. of ICT (Karlsruhe, 2006), pp. 74.1–74.17.

    Google Scholar 

  32. M. Rahm and T. Brinck, “Dinitraminic Acid (HDN) Isomerization and Self-Decomposition Revised,” Chem. Phys. 348, 53–60 (2008).

    Article  ADS  Google Scholar 

  33. V. A. Shlyapochnikov, G. I. Oleneva, N. O. Cherskaya, et al., “Dinitramide and Its Salts. Communication 7. Spectra and Structure of Dinitramide Salts,” Izv. Akad. Nauk, Ser. Khim., No. 8, 1508–1511 (1995).

    Google Scholar 

  34. V. A. Shlyapochnikov, M. A. Tafipolsky, I. V. Tokmakov, et al., “On the Structure and Spectra of Dinitramide Salts,” J. Mol. Struct. 559, 147–166 (2001).

    Article  ADS  Google Scholar 

  35. R. Gilardi, J. Flippen-Anderson, C. George, and R. J. Butcher, “A New Class of Flexible Energetic Salts: The Crystal Structures of the Ammonium, Lithium, Potassium, and Cesium Salts of Dinitramide.” J. Amer. Chem. Soc. 119, 9411–9416 (1997).

    Article  Google Scholar 

  36. F. I. Dubovitskii, N. I. Golovina, A. N. Pavlov, and L. O. Atovmyan, “Structural Features of Dinitramide Salts with Alkali Metals,” Dokl. Akad. Nauk 355 (2), 200–202 (1997).

    Google Scholar 

  37. J. Cui, J. Han, J. Wang, and R. Huang, “Study on the Crystal Structure and Hygroscopicity of Ammonium Dinitramide,” J. Chem. Eng. Data 55, 3229–3234 (2010).

    Article  Google Scholar 

  38. R. J. Schmitt, M. Krempp, and V. M. Bierbaum, “Gas Phase Chemistry of Dinitramide and Nitroacetylide Ions,” J. Mass Spectrom. Ion Proces. 177, 621–632 (1992).

    Article  ADS  Google Scholar 

  39. R. J. Doyle, “Sputtered Ammonium Dinitramide: Tandem Mass Spectrometry of a New Ionic Nitramide,” Org. Mass Spectrom. 28 (2), 83–91 (1993).

    Article  Google Scholar 

  40. S. Alavi and D. L. Thompson, “Proton Transfer in Gas-Phase Ammonium Dinitramide Clusters,” J. Chem. Phys. 118 (6), 2599–2605 (2003).

    Article  ADS  Google Scholar 

  41. M. J. Rossi, J. C. Bottaro, and D. F. Mc Millen, “The Thermal Decomposition of the New Energetic Material Ammonium Dinitramide (NH4N(NO2)2) inRelation to Nitramide (NH2NO2) and NH4NO3,” Int. J. Chem. Kinet. 25, 549–570 (1993).

    Article  Google Scholar 

  42. A. Snelson and A. J. Tulis, “Vaporization of NH4N(NO2)2 and Tentative Identification of HN(NO2)2 by IR Matrix Isolation Spectroscopy,” in Proc. 19th Int. Pyrotechnics Seminar, Christchurch, New Zeland, February 20–25, 1994, pp. 531–544.

  43. F. I. Dubovitskii, G. A. Voklov, V. N. Grebennikov, et al., “Thermal Decomposition of the Potassium Salt of Dinitramide in the Liquid State,” Dokl. Akad. Nauk 347 (6), 763–765 (1996).

    Google Scholar 

  44. F. I. Dubovitskii, G. A. Voklov, V. N. Grebennikov, et al., “Thermal Decomposition of the Potassium Salt of Dinitramide in the Solid State,” Dokl. Akad. Nauk 348 (2), 205–206 (1996).

    Google Scholar 

  45. S. B. Babkin, A. N. Pavlov, and G. M. Nazin, “Anomalous Decomposition of Dinitramide Salts with Metals in the Solid State,” Izv. Akad. Nauk, Ser. Khim., No. 11, 1947–1950 (1997).

    Google Scholar 

  46. A. N. Pavlov and G. M. Nazin, “Decomposition Mechanism of Dinitramide Salts. Anomalous Decomposition of Dinitramide Metal Salts and Ammonium Salt in the Solid Phase,” in: Energetic Materials, Production, Processing and Characterization: 29th Int. Annu. Conf. of ICT (Karlsruhe, 1998), Paper 25, pp. 1–14.

    Google Scholar 

  47. A. N. Pavlov and G. M. Nazin, “Mechanism of Decomposition of Onium Salts of Dinitramide,” Izv. Akad. Nauk, Ser. Khim., No. 11, 1951–1953 (1997).

    Google Scholar 

  48. A. I. Kazakov, Yu. I. Rubtsov, G. B. Manelis, and L. P. Andrienko, “Kinetics of Dinitramide Decomposition. Communication 2. Kinetics of Dinitramide Interaction with Products of Decomposition and Other Components of the Solution,” Izv. Akad. Nauk, Ser. Khim., No. 1, 41–47 (1998).

    Google Scholar 

  49. A. I. Kazakov, Yu. I. Rubtsov, L. P. Andrienko, and G. B. Manelis “Kinetics of Dinitramide Decomposition. Communication 3. Kinetics of Heat Release during Thermal Decomposition of the Ammonium Salt of Dinitramide in the Liquid Phase,” Izv. Akad. Nauk, Ser. Khim., No. 3, 395–401 (1998).

  50. A. I. Kazakov, Y. I. Rubtsov, and G. B. Manelis, “Kinetics and Mechanism of Thermal Decomposition of Dinitramide,” Propell., Explos., Pyrotech. 24, 37–42 (1999).

    Article  Google Scholar 

  51. T. B. Brill, P. J. Brush, and D. G. Patil, “Thermal Decomposition of Energetic Materials 58. Chemistry of Ammonium Nitrate and Ammonium Dinitramide near the Burning Surface Temperature,” Combust. Flame 92 (1-2), 178–186 (1993).

  52. J. C. Oxley, J. L. Smith, W. Zheng, et al., “Thermal Decomposition Studies on Ammonium Dinitramide (ADN) and 15N and 2H Isotopomers,” J. Phys. Chem. A 101 (31), 5646–5652 (1997).

    Article  Google Scholar 

  53. S. Vyazovkin and C. A. Wight, “Ammonium Dinitramide: Kinetics and Mechanism of Thermal Decomposition,” J. Phys. Chem. A 101 (31), 5653–5658 (1997).

    Article  Google Scholar 

  54. S. Vyazovkin and C. A. Wight, “Thermal Decomposition of Ammonium Dinitramide at Moderate and High Temperatures,” J. Phys. Chem. A 101 (39), 7217–7221 (1997).

    Article  Google Scholar 

  55. H. Matsunaga, H. Habu, and A. Miyake, “Thermal Behavior of New Oxidizer Ammonium Dinitramide,” J. Therm. Anal. Calorim. 111, 1183–1188 (2013).

    Article  Google Scholar 

  56. H. Matsunaga, H. Habu, and A. Miyake, “Influences of Aging on Thermal Decomposition Mechanism of High Performance Oxidizer Ammonium Dinitramide,” J. Therm. Anal. Calorim. 113, 1384–1394 (2013).

    Article  Google Scholar 

  57. K. Fujisato, H. Habu, and K. Hori, “Condensed Phase Behavior in the Combustion of Ammonium Dinitramide,” Propell., Explos., Pyrotech. 39 (5), 714–722 (2014).

    Article  Google Scholar 

  58. I. B. Mishra and T. P. Russell, “Thermal Stability of Ammonium Dinitramide,” Thermochim. Acta 384, 47–56 (2002).

    Article  Google Scholar 

  59. A. B. Andreev, O. V. Anikin, A. P. Ivanov, et al., “Stabilization of the Ammonium Salt of Dinitramide in the Liquid State,” Izv. Akad. Nauk, Ser. Khim., No. 12, 2006–2008 (2000).

    Google Scholar 

  60. G. Santhosh, S. Venkatachalam, K. Krishnan, et al., “A Thermogravimetric Study on the Thermal Decomposition of Ammonium Dinitramide (ADN)—Potassium Dinitramide (KDN) Mixtures,” in Proc. 34th Int. Annu. Conf. of ICT (Karlsruhe, 2003), pp. 1–9.

    Google Scholar 

  61. R. S. Zhu, H.-L. Chen, and M. C. Lin, “Mechanism and Kinetics for Ammonium Dinitramide (ADN) Sublimation: A First-Principles Study,” J. Phys. Chem. A 116, 10836–10841 (2012).

    Article  Google Scholar 

  62. L. V. Gurvich, I. V. Veits, V. A. Medvedev, et al., Thermodynamic Properties of Individual Substances (Nauka, Moscow, 1978), Vol. 1, Book 2 [in Russian].

    Google Scholar 

  63. J. Park, D. Chakraborty, and M. C. Lin, “Thermal Decomposition of Gaseous Ammonium Dinitramide at Low Pressure: Kinetic Modeling of Product Formation with ab Initio MO / c VRRKM Calculations,” in Proc. 27th Symp. (Int.) on Combustion (The Combustion Inst., 1998), pp. 2351–2357.

    Google Scholar 

  64. V. P. Sinditskii, V. Y. Egorshev, A. I. Levshenkov, and V. V. Serushkin, “Combustion of Ammonium Dinitramide. Part 2: Combustion Mechanism,” J. Propuls. Power 22 (4), 777–785 (2006).

    Article  Google Scholar 

  65. A. A. Zenin, V. M. Puchkov, and S. V. Finjakov, “Physics of ADN Combustion,” in 37th Aerospace Sciences Meeting and Exhibit, Reno, January 11–14, 1999, AIAA Paper No. 1999-0595 (1999).

    Google Scholar 

  66. V. P. Sinditskii, V. Yu. Egorshev, V. V. Serushkin, and S. A. Filatov, “Combustion of Energetic Materials Controlled by Condensed-Phase Reactions,” Fiz. Goreniya Vzryva 48 (1), 89–109 (2012) [Combust., Expl., Shock Waves 48 (1), 81–99 (2012)].

    Google Scholar 

  67. A. Hahma, H. Edvinsson, and H. Östmark, “The Properties of Ammonium Dinitramine (ADN): Part 2: Melt Casting,” J. Energ. Mater. 28, 114–138 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Ermolin.

Additional information

Original Russian Text © N.E. Ermolin, V.M. Fomin.

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 5, pp. 79–101, September–October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermolin, N.E., Fomin, V.M. On the mechanism of thermal decomposition of ammonium dinitramide (review). Combust Explos Shock Waves 52, 566–586 (2016). https://doi.org/10.1134/S0010508216050087

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216050087

Keywords

Navigation