Skip to main content
Log in

Low-temperature autoignition of binary mixtures of methane with C3–C5 alkanes

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The influence of C3–C5 alkanes on the ignition of their binary mixtures with methane in air at a temperature of 523–1000 K and a pressure of 1 atm is studied. It is shown that the presence of only 1% C3–C5 alkanes considerably reduces the ignition delay of methane. At a concentration of 10–20%, the ignition delay practically corresponds to the autoignition delay of the added alkane. The effect of additives of heavy alkanes becomes less noticeable with increasing initial temperature. These results can be used to estimate the permissible content of C5+ heavy species in gas turbine engine fuel at which their influence on the fuel knock resistance is sufficiently low. It is only 0.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Solov’yanov, “Problems of Oil Associated Gas Utilization in Russia,” Neftegazokhimiya, No. 1, 12–16 (2015).

    Google Scholar 

  2. “North Dakota Flaring Reduction Policy May Impact January Production,” OGJ Online, July 2, 2014; http://www.ogj.com/articles/2014/07/northdakota-flaring-reduction-policy-may-impact-januaryproduction.html.

  3. End of Routine Gas Flaring at Oil Production Sites Urged by 2030, http://www.ogj.com/articles/2015/04/ end-of-routine-gas-flaring-at-oil-production-sites-urgedby-2030.htmlcmpid=EnlDailyApril202015.

  4. V. S. Arutyunov, M. U. Sinev, V. N. Shmelev, and A. A. Kiryushin, “Gas-Chemical Conversion of Associated Gas for Small Power Units,” Gasokhimiya, No. 1 (11), 16–20 (2010).

    Google Scholar 

  5. A. A. Borisov, I. V. Bilera, Yu. A. Kolbanovskii, G. G. Politenkova, and K. Ya. Troshin, “One-Stage Conversion of Oil Associated and Natural Gas to Syngas in Ignition and Combustion Processes,” Zh. Ros. Khim. Obchsh. Mendeleeva LIV (5), 62–69 (2010).

    Google Scholar 

  6. I. V. Bilera, A. A. Borisov, A. B. Borunova, Yu. A. Kolbanovskii, Yu. M. Koroleva, I. V. Rossikhin, and K. Ya. Troshin, “Syngas Production by Methane Combustion: Formation of Soot and Its Physical and Chemical Characteristics,” Neftekhimiya 50 (5), 351–355 (2010).

    Google Scholar 

  7. V. S. Arutyunov, V. M. Shmelev, A. N. Rakhmetov, and O. V. Shapovalova, “3D Matrix Burners: A Method for Small-Scale Syngas Production,” Ind. Eng. Chem. Res. 53 (5), 1754–1759 (2014).

    Article  Google Scholar 

  8. V. S. Arutyunov, R. N. Magomedov, A. Yu. Proshina, and L. N. Strekova, “Oxidative Conversion of Light Alkanes Diluted by Nitrogen, Helium or Methane,” Chem. Eng. J. 238, 9–16 (2014).

    Article  Google Scholar 

  9. S. M. Frolov, “Acceleration of the Deflagration to Detonation Transition in Gases: From Shchelkin to Our Days,” Fiz. Goreniya Vzryva 48 (3), 13–24 (2012) [Combust., Expl., Shock Waves 48 (3), 258–268 (2012)].

    Google Scholar 

  10. D. Beerer, V. McDonell, S. Samuelsen, and L. Angello, “An Experimental Ignition Delay Study of Alkane Mixtures in Turbulent Flows at Elevated Temperatures and Intermediate Temperatures,” J. Eng. Gas Turbines and Power 133, 011502–1–011502–8 (2011).

    Article  Google Scholar 

  11. H. B. Levinsky, S. Gersen, M. H. Rothink, and G. H. J. van} Dijk, “Progress Towards a Method for Ranking Gases for Knock Resistance Using Ignition Delays},” in Proc. of the European Combustion Meeting} 2009}; www.ecm2009

  12. S. Gersen, M. H. Rothink, G. H. J. van Dijk, and H. B. Levinsky, “A New Experimentally Tested Method to Classify Gaseous Fuels for Knock Resistance Based on the Chemical and Physical Properties of the Gases,” in Int. Gas Union Res. Conf. 2011; http://members.igu.org/old/IGU%20Events/igrc/ igrc-2011-proceedings-and-presentatijns/poster-paperssession-3/P3-18 Howard%20Levinsky.pdf.

  13. A. A. Borisov, V. G. Knorre, E. L. Kudryashova, G. I. Skachkov, and K. Ya. Troshin, “On Temperature Measurements in the Induction Period of Ignition of Homogeneous Gas Mixtures in a Static Admittance Apparatus,” Chem. Phys. Rep. 17 (7), 1323–1331 (1998).

    Google Scholar 

  14. Low-Temperature Combustion and Autoignition, Ed. by M. J. Piling (Leeds, England, 1997), p. 794.

  15. D. Healy, N. S. Donato, C. J. Aul, E. L. Petersen, C. M. Zinner, G. Bourque, and H. J. Curran, “n-Butane: Ignition Delay Measurements at High Pressure and Detailed Chemical Kinetic Simulations,” Combust. Flame 157 (7), 1526–1539 (2010).

    Article  Google Scholar 

  16. A. A. Borisov, N. M. Rubtsov, G. I. Skachkov, and K. Ya. Troshin, “Gas-Phase Ignition of Hydrocarbons,” Khim. Fiz. 31 (8), 30–36 (1982).

    Google Scholar 

  17. A. A. Borisov, V. M. Zamanskii, V. V. Lisyanskii, G. I. Skachkov, and K. Ya. Troshin, “Quantitative Analysis of the Mechanisms of Promoted High-Temperature Autoignition of Hydrocarbons,” Khim. Fiz. 6 (2), 262–271 (1987).

    Google Scholar 

  18. A. A. Borisov, V. V. Lisyanskii, G. I. Skachkov, K. Ya. Troshin, and V. M. Zamanskii, “Promoted High-Temperature Reactions,” in 22nd Symp. (Int.) on Combustion (1989), pp. 903–910.

    Google Scholar 

  19. A. A. Borisov, G. I. Skachkov, and K. Ya. Troshin, “Analytical Studies of Simple Kinetic Mechanisms for Promoted Self Ignition of Model Fuels,” in Int. Colloquium on the Advanced Computation and Analysis of Combustion (ENAS, Moscow, 1997), pp. 79–89.

    Google Scholar 

  20. A. A. Borisov, E. V. Dragalova, V. M. Zamanskiy, V. V. Lisyanskii, G. I. Skachkov, and K. Kostea, “Mechanism and Kinetics of Autoignition of Methane,” Khim. Fiz. 1 (4), 536–543 (1982).

    Google Scholar 

  21. Y. B. Zel’dovich, B. E. Gelfand, S. A. Tsyganov, S. M. Frolov, A. N. Polenov, “Concentration and Temperature Nonuniformities of Combustible Mixtures As Reason for Pressure Waves Generation,” in Dynamics of Explosions (1988), pp. 99–12. (Prog. Astronaut. Aeronaut., Vol. 114.)

    Google Scholar 

  22. K. Ya. Troshin, “Autoignition and Combustion of Alternative Conventional Fuels,” Doct. Dissertation in Phys.-Math. Sci. (Inst. of Chem. Phys., Russian Acad. of Sci., Moscow, 2008).

    Google Scholar 

  23. www.grasys.ru.

  24. T. P. Pushkareva and V. I. Bykov, “Combustion of a Mixture of Two Hydrocarbons in an Ideal-Mixing Flow-Through Reactor,” Fiz. Goreniya Vzryva 27 (3), 28–35 (1991) [Combust., Expl., Shock Waves 27 (3), 287–294 (1991)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Arutyunov.

Additional information

Original Russian Text © K.Ya. Troshin, A.V. Nikitin, A.A. Borisov, V.S. Arutyunov.

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 4, pp. 15–23, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troshin, K.Y., Nikitin, A.V., Borisov, A.A. et al. Low-temperature autoignition of binary mixtures of methane with C3–C5 alkanes. Combust Explos Shock Waves 52, 386–393 (2016). https://doi.org/10.1134/S001050821604002X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050821604002X

Keywords

Navigation