Skip to main content
Log in

Paradox of small particles in the pulsed laser initiation of explosive decomposition of energetic materials

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The dependences of the critical energy density required to initiate the explosive decomposition of lead azide and the radius of the most heated nanoparticle on the pulse duration of the first harmonic of neodymium laser (1064 nm) are calculated within the framework of the micro-hotspot model of thermal explosion. The calculations are carried out with account for the dependence of the absorption efficiency factor of the laser pulse on the lead nanoparticle radius. With the maximum value of the absorption efficiency factor (1.18), the lead nanoparticle radius (in lead azide) becomes 74 nm. If the pulse duration is short (smaller than 40 ns), the radius of the most heated lead nanoparticle in the lead azide matrix varies slightly (less than 15%) and equals 63.5 nm within the range of short pulse durations. Accounting for the dependence of the absorption efficiency factor of the laser pulse on the nanoparticle radius makes it possible to resolve the paradox of small particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yang, Z. Sun, S. Wang, and D. Dlott, “Fast Spectroscopy of Laser-Initiated Nanoenergetic Materials,” J. Phys. Chem. B 107 (19), 4485–4493 (2003).

    Article  Google Scholar 

  2. B. P. Aduev and D. R. Nurmukhametov, “The Influence of Added Aluminum Nanoparticles on the Sensitivity of Pentaerythritol Tetranitrite to Laser Irradiation,” Khim. Fiz. 30 (3), 63–65 (2011) [Russ. J. Phys. Chem. B 5 (2), 290–292 (2011)].

    Google Scholar 

  3. A. V. Kalenskii, M. V. Anan’eva, A. A. Zvekov, and I. Yu. Zykov, “Explosive Decomposition Kinetics of Aluminum Tetranitropentaerytrite Pellets,” Zh. Tekh. Fiz. 85 (3), 119–123 (2015) [Tech. Phys. 60 (3), 437–441 (2015)].

    Google Scholar 

  4. B. P. Aduev, G. M. Belokurov, D. R. Nurmukhametov, and N. V. Nelyubina, “Photosensitive Material Based on PETN Mixtures with Aluminum Nanoparticles,” Fiz. Goreniya Vzryva 48 (3), 127–132 (2012) [Combust., Expl., Shock Waves 48 (3), 361–366 (2012)].

    Google Scholar 

  5. V. K. Pustovalov and L. G. Astafyeva, “Nonlinear Absorption, Scattering, and Extinction of Laser Radiation by Two-Layered Spherical System—Gold Nanoparticle and Vapor Shell in Water,” Laser Phys. 21 (12), 2098–2107 (2011).

    Article  ADS  Google Scholar 

  6. Yu. A. Chumakov and A. G. Knyazeva, “Initiation of Reaction in the Vicinity of a Single Particle Heated by Microwave Radiation,” Fiz. Goreniya Vzryva 48 (2), 24–30 (2012) [Combust., Expl., Shock Waves 48 (2), 144–150 (2012)].

    Google Scholar 

  7. B. P. Aduev, D. R. Nurmukhametov, R. I. Furega, A. A. Zvekov, and A. V. Kalenskii, “Explosive Decomposition of PETN with Nanoaluminum Additives Under the Influence of Pulsed Laser Radiation at Different Wavelengths,” Khim. Fiz. 32 (8), 39–42 (2013) [Russ. J. Phys. Chem. B 7 (4), 453–456 (2013)].

    Google Scholar 

  8. A. V. Kalenskii, A. A. Zvekov, M. V. Anan’eva, I. Yu. Zykov, V. G. Kriger, and B. P. Aduev, “Influence of Laser Wavelength on the Critical Energy Density for Initiation of Energetic Materials,” Fiz. Goreniya Vzryva 50 (3), 98–104 (2014) [Combust., Expl., Shock Waves 50 (3), 333–338 (2014)].

    Google Scholar 

  9. A. V. Kalenskii and M. V. Ananyeva, “Spectral Regularities of the Critical Energy Density of the Pentaerythriol Tetranitrate–Aluminium Nanosystems Initiated by the Laser Pulse,” Nanosystems: Phys. Chem. Math. 5 (6), 803–810 (2014).

    Google Scholar 

  10. E. I. Aleksandrov and V. P. Tsipilev, “Effect of the Pulse Length on the Sensitivity of Lead Azide to Laser Radiation,” Fiz. Goreniya Vzryva 20 (6), 104–108 (1984) [Combust., Expl., Shock Waves 20 (6), 690–694 (1984)].

    Google Scholar 

  11. R. S. Burkina, V. V. Medvedev, E. A. Mikova, and V. P. Tsipilev, “Initiation of Pressed Powders of Lead Azide Laser Pulses of Various Duration,” in Physical and Chemical Processes in Inorganic Materials (PhKhP-10), Conference Report (Kemerovo State University, 2007), Vol. 1, pp. 205–209.

    Google Scholar 

  12. R. S. Burkina, E. Yu. Morozova, and V. P. Tsipilev, “Initiation of a Reactive Material by a Radiation Beam Absorbed by Optical Heterogeneities of the Material,” Fiz. Goreniya Vzryva 47 (5), 95–105 (2011) [Combust., Expl., Shock Waves 47 (5), 581–590 (2011)].

    Google Scholar 

  13. I. G. Assovskii, Combustion Physics and Internal Ballistics (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  14. E. I. Aleksandrov, O. B. Sidonskii, and V. P. Tsipilev, “Influence of Combustion in the Vicinity of Absorbing Inclusions on the Laser Ignition of a Condensed Medium,” Fiz. Goreniya Vzryva 27 (3), 7–12 (1991) [Combust., Expl., Shock Waves 27 (3), 267–272 (1991)].

    Google Scholar 

  15. V. G. Kriger, A. V. Kalenskii, A. A. Zvekov, I. Yu. Zykov, and B. P. Aduev, “Effect of Laser Radiation Absorption Efficiency on the Heating Temperature of Inclusions in Transparent Media,” Fiz. Goreniya Vzryva 48 (6), 54–58 (2012) [Combust., Expl., Shock Waves 48 (6), 705–708 (2012)].

    Google Scholar 

  16. B. P. Aduev, M. V. Anan’eva, A. A. Zvekov, A. V. Kalenskii, V. G. Kriger, and A. P. Nikitin, “Micro-Hotspot Model for the Laser Initiation of Explosive Decomposition of Energetic Materials with Melting Taken into Account,” Fiz. Goreniya Vzryva 50 (6), 92–99 (2014) [Combust., Expl., Shock Waves 50 (6), 704–710 (2014)].

    Google Scholar 

  17. A. V. Kalenskii, V. G. Kriger, I. Yu. Zykov, and M. V. Anan’eva, “Modern Microcenter Heat Explosion Model,” J. Phys.: Conf. Ser. 552, 012037 (2014); DOI: 10.1088/1742-6596/552/1/012037.

    ADS  Google Scholar 

  18. B. P. Aduev, D. R. Nurmukhametov, G. M. Belokurov, A. A. Zvekov, A. V. Kalenskii, A. P. Nikitin, and I. Yu. Liskov, “Integrating Sphere Study of the Optical Properties of Aluminum Nanoparticles in Tetranitropentaerytrite,” Zh. Tekh. Fiz. 84 (9), 126–131 (2014) [Tech. Phys. 59 (9), 1387–1392 (2014)].

    Google Scholar 

  19. A. A. Zvekov, A. V. Kalenskii, B. P. Aduev, and M. V. Ananyeva, “Calculation of the Optical Properties of the Pentaerythritol Tetranitrate–Cobalt Nanoparticle Composites,” Zh. Prikl. Spektroskop. 82 (2), 219–226 (2015) [J. Appl. Spectr. 82 (2), 213–220 (2015)].

    Google Scholar 

  20. A. A. Zvekov, M. V. Anan’eva, A. V. Kalenskii, and A. P. Nikitin, “Regularities of Light Diffusion in the Composite Material Pentaery Thriol Tetranitrate–Nickel,” Nanosystems: Phys., Chem., Math. 5 (5), 685–691 (2014).

    Google Scholar 

  21. V. P. Tsipilev, “Stand for Studying the Kinetics of Explosive Decomposition of Condensed Media Under the Influence of Laser Pulses,” Izv. Tomsk. Polytekh. Univ. 306 (4), 99–103 (2003).

    Google Scholar 

  22. V. G. Kriger, A. V. Kalenskii, A. A. Zvekov, M. V. Anan’eva, and A. P. Borovikova, “A Diffusion Model of Chain-Branching Reaction of the Explosive Decomposition of Heavy Metal Azides,” Khim. Fiz. 28 (8), 67–71 (2009) [Russ. J. Phys. Chem. B 3 (4), 636–640 (2009)].

    Google Scholar 

  23. V. G. Kriger, A. V. Kalenskii, A. A. Zvekov, A. P. Borovikova, and E. A. Grishaeva, “Determining the Width of the Reaction Wave Front in the Explosive Decomposition of Silver Azide,” Fiz. Goreniya Vzryva 48 (4), 129–136 (2012) [Combust., Expl., Shock Waves 48 (4), 488–495 (2012)].

    Google Scholar 

  24. D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, “Ignition of Polymer Material with Single Hot Metallic and Nonmetallic Particles Under Diffusive-Convective Heat and Mass Transfer in an Oxidizing Medium,” Khim. Fiz. 33 (9), 26–33 (2014) [Russ. J. Phys. Chem. B 8 (5) 664–671 (2014)].

    Google Scholar 

  25. D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, “Solid-Phase Ignition of a Composite Propellant by a Hot Particle Under Free-Convection Heat Sink Into The Environment,” Khim. Fiz. 33 (4), 38–47 (2014) [Russ. J. Phys. Chem. B 8 (2) 196–204 (2014)].

    Google Scholar 

  26. V. G. Kriger, A. V. Kalenskii, A. A. Zvekov, I. Yu. Zykov, and A. P. Nikitin, “Heat-Transfer Processes upon Laser Heating if Inert-Matrix-Hosted Inclusions,” Teplofiz. Aeromekh. 20 (3), 375–382 (2013) [Thermophysics and Aeromechanics 20 (3) 367–374 (2013)].

    Google Scholar 

  27. A. V. Kalenskii, A. A. Zvekov, A. P. Nikitin, M. V. Anan’eva, and B. P. Aduev, “Specific Features of Plasmon Resonance in Nanoparticles of Different Metals,” Opt. Spektroskop. 118 (6), 1012–1021 (2015) [Opt. Spectr. 118 (6) 978–987 (2015)].

    Google Scholar 

  28. G. V. Kuznetsov, G. Ya. Mamontov, and G. V. Taratushkina, “Numerical Simulation of Ignition of a Condensed Substance by a Particle Heated to High Temperatures,” Fiz. Goreniya Vzryva 40 (1), 78–85 (2004) [Combust., Expl., Shock Waves 40 (1), 70–76 (2004)].

    Google Scholar 

  29. D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, “Numerical Simulation of Solid-Phase Ignition of Metallized Condensed Matter by a Particle Heated to a High Temperature,” Khim. Fizika 30 (12), 35–42 (2011) [Russ. J. Phys Chem. B 5 (6) 1000–1006 (2011)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kalenskii.

Additional information

Original Russian Text © A.V. Kalenskii, M.V. Anan’eva, A.A. Zvekov, I.Yu. Zykov.

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 2, pp. 122–129, March–April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalenskii, A.V., Anan’eva, M.V., Zvekov, A.A. et al. Paradox of small particles in the pulsed laser initiation of explosive decomposition of energetic materials. Combust Explos Shock Waves 52, 234–240 (2016). https://doi.org/10.1134/S0010508216020143

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216020143

Keywords

Navigation